2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)_第1頁
2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)_第2頁
2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)_第3頁
2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)_第4頁
2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩26頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022年四川省資陽市普通高校對口單招數(shù)學自考模擬考試(含答案)學校:________班級:________姓名:________考號:________

一、單選題(22題)1.A.B.{-1}

C.{0}

D.{1}

2.已知點A(1,-3)B(-1,3),則直線AB的斜率是()A.

B.-3

C.

D.3

3.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()A.0B.-8C.2D.10

4.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)

5.函數(shù)y=lg(x+1)的定義域是()A.(-∞,-1)B.(-∞,1)C.(-1,+∞)D.(1,-∞)

6.為了了解全校240名學生的身高情況,從中抽取240名學生進行測量,下列說法正確的是()A.總體是240B.個體是每-個學生C.樣本是40名學生D.樣本容量是40

7.函數(shù)y=|x|的圖像()

A.關于x軸對稱B.關于y軸對稱C.關于原點對稱D.關于y=x直線對稱

8.設a>b>0,c<0,則下列不等式中成立的是A.ac>bc

B.

C.

D.

9.設l表示一條直線,α,β,γ表示三個不同的平面,下列命題正確的是()A.若l//α,α//β,則l//β

B.若l//α,l//β,則α//β

C.若α//β,β//γ,則α//γ

D.若α//β,β//γ,則α//γ

10.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(-∞,0)上單調遞增的是()A.f(x)=1/x2

B.f(x)=x2+1

C.f(x)=x3

D.f(x)-2-x

11.若f(x)=1/log1/2(2x+1),則f(x)的定義域為()A.(-1/2,0)B.(-1/2,+∞)C.(-1/2,0)∪(0,+∞)D.(-1/2,2)

12.已知過點A(0,-1),點B在直線x-y+1=0上,直線AB的垂直平分線x+2y-3=0,則點B的坐標是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

13.拋物線y=2x2的準線方程為()A.y=-1/8B.y=-1/4C.y=-1/2D.y=-1

14.直線2x-y+7=0與圓(x-b2)+(y-b2)=20的位置關系是()A.相離B.相交但不過圓心C.相交且過圓心D.相切

15.若102x=25,則10-x等于()A.

B.

C.

D.

16.已知函數(shù)f(x)為奇函數(shù),且當x>0時,f(x)=x2+1/x,則f(-1)=()A.2B.1C.0D.-2

17.一元二次不等式x2+x-6<0的解集為A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

18.若直線x-y+1=0與圓(x-a)2+y2=2有公共點,則實數(shù)a取值范圍是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)

19.已知a=(1,2),則|a|=()A.1

B.2

C.3

D.

20.兩個平面之間的距離是12cm,—條直線與他們相交成的60°角,則這條直線夾在兩個平面之間的線段長為()A.cm

B.24cm

C.cm

D.cm

21.設則f(f(-2))=()A.-1B.1/4C.1/2D.3/2

22.A.B.C.

二、填空題(10題)23.拋物線y2=2x的焦點坐標是

24.

25.

26.已知圓柱的底面半徑為1,母線長與底面的直徑相等,則該圓柱的表面積為_____.

27.

28.某校有高中生1000人,其中高一年級400人,高二年級300人,高三年級300人,現(xiàn)釆取分層抽樣的方法抽取一個容量為40的樣本,則高三年級應抽取的人數(shù)是_____人.

29.已知_____.

30.

31.已知等差數(shù)列{an}的公差是正數(shù),且a3·a7=-12,a4+a6=-4,則S20=_____.

32.已知△ABC中,∠A,∠B,∠C所對邊為a,b,c,C=30°,a=c=2.則b=____.

三、計算題(10題)33.設函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.

34.有語文書3本,數(shù)學書4本,英語書5本,書都各不相同,要把這些書隨機排在書架上.(1)求三種書各自都必須排在一起的排法有多少種?(2)求英語書不挨著排的概率P。

35.解不等式4<|1-3x|<7

36.已知函數(shù)y=cos2x+3sin2x,x∈R求:(1)函數(shù)的值域;(2)函數(shù)的最小正周期。

37.己知{an}為等差數(shù)列,其前n項和為Sn,若a3=6,S3=12,求公差d.

38.(1)求函數(shù)f(x)的定義域;(2)判斷函數(shù)f(x)的奇偶性,并說明理由。

39.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.

40.甲、乙兩人進行投籃訓練,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且兩人投球命中與否相互之間沒有影響.(1)若兩人各投球1次,求恰有1人命中的概率;(2)若兩人各投球2次,求這4次投球中至少有1次命中的概率.

41.有四個數(shù),前三個數(shù)成等差數(shù)列,公差為10,后三個數(shù)成等比數(shù)列,公比為3,求這四個數(shù).

42.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

四、簡答題(10題)43.已知拋物線y2=4x與直線y=2x+b相交與A,B兩點,弦長為,求b的值。

44.化簡

45.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求實數(shù)x。

46.等比數(shù)列{an}的前n項和Sn,已知S1,S3,S2成等差數(shù)列(1)求數(shù)列{an}的公比q(2)當a1-a3=3時,求Sn

47.已知等差數(shù)列{an},a2=9,a5=21(1)求{an}的通項公式;(2)令bn=2n求數(shù)列{bn}的前n項和Sn.

48.已知雙曲線C的方程為,離心率,頂點到漸近線的距離為,求雙曲線C的方程

49.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

50.平行四邊形ABCD中,CBD沿對角線BD折起到平面CBD丄平面ABD,求證:AB丄DE。

51.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程

52.拋物線的頂點在原點,焦點為橢圓的左焦點,過點M(-1,-1)引拋物線的弦使M為弦的中點,求弦長

五、解答題(10題)53.

54.

55.如圖,ABCD-A1B1C1D1為長方體.(1)求證:B1D1//平面BC1D;(2)若BC=CC1,,求直線BC1與平面ABCD所成角的大小.

56.已知函數(shù)f(x)=x2-2ax+a,(1)當a=2時,求函數(shù)f(x)在[0,3]上的值域;(2)若a<0,求使函數(shù)f(x)=x2-2ax+a的定義域為[―1,1],值域為[一2,2]的a的值.

57.解不等式4<|1-3x|<7

58.某學校高二年級一個學習興趣小組進行社會實踐活動,決定對某“著名品牌”A系列進行市場銷售量調研,通過對該品牌的A系列一個階段的調研得知,發(fā)現(xiàn)A系列每日的銷售量f(x)(單位:千克)與銷售價格x(元/千克)近似滿足關系式f(x)=a/x-4+10(1-7)2其中4<x<7,a為常數(shù).已知銷售價格為6元/千克時,每日可售出A系列15千克.(1)求函數(shù)f(x)的解析式;(2)若A系列的成本為4元/千克,試確定銷售價格x的值,使該商場每日銷售A系列所獲得的利潤最大.

59.如圖,在正方體ABCD—A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點.(1)求證:EF//平面CB1D1;(2)求證:平面CAA1C1丄平面CB1D1

60.

61.如圖,在三棱錐A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直線AD與平面BCD所成的角為45°點E,F(xiàn)分別是AC,AD的中點.(1)求證:EF//平面BCD;(2)求三棱錐A-BCD的體積.

62.給定橢圓C:x2/a2+y2/b2(a>b>0),稱圓C1:x2+y2=a2+b2為橢圓C的“伴隨圓已知橢圓C的離心率為/2,且經(jīng)過點(0,1).(1)求橢圓C的方程;(2)求直線l:x—y+3=0被橢圓C的伴隨圓C1所截得的弦長.

六、單選題(0題)63.圓x2+y2-2x-8y+13=0的圓心到直線ax+y-1=0的距離為1,則a=()A.-4/3

B.-3/4

C.

D.2

參考答案

1.C

2.B

3.B直線之間位置關系的性質.由k=4-m/m+2=-2,得m=-8.

4.A向量的運算.=(l,2)+(3,4)=(4,6).

5.C函數(shù)的定義.x+1>0所以x>-1.

6.D確定總體.總體是240名學生的身高情況,個體是每一個學生的身高,樣本是40名學生的身髙,樣本容量是40.

7.B由于函數(shù)為偶函數(shù),因此函數(shù)圖像關于y對稱。

8.B

9.C

10.A函數(shù)的奇偶性,單調性.因為:y=x2在(-∞,0)上是單調遞減的,故y=1/x2在(-∞,0)上是單調遞增的,又y=1/x2為偶函數(shù),故A對;y=x2+1在(-∞,0)上是單調遞減的,故B錯;y=x3為奇函數(shù),故C錯;y=2-x為非奇非偶函數(shù),故D錯.

11.C函數(shù)的定義域.㏒1/2(2x+l)≠0,所以2x+l>0,2x+l≠1.所以x∈(-1/2,0)∪(0,+∞).

12.B由于B在直線x-y+1=0上,所以可以設B的坐標為(x,x+1),AB的斜率為,垂直平分線的斜率為,所以有,因此點B的坐標為(2,3)。

13.A

14.D由題可知,直線2x-y+7=0到圓(x-b)2+(y-b)2=20的距離等于半徑,所以二者相切。

15.B

16.D函數(shù)的奇偶性.由題意得f(-1)=-f(1)=-(1+1)=-2

17.A

18.C直線與圓的公共點.圓(x-a)2+y2=2的圓心C(a,0)到x-y+1=0

19.D向量的模的計算.|a|=

20.A

21.C函數(shù)的計算.f(-2)=2-2=1/4>0,則f(f(-2))=f(1/4)=1-=1-1/2=1/2

22.A

23.(1/2,0)拋物線y2=2px(p>0)的焦點坐標為F(P/2,0)。∵拋物線方程為y2=2x,

∴2p=2,得P/2=1/2

∵拋物線開口向右且以原點為頂點,

∴拋物線的焦點坐標是(1/2,0)。

24.5

25.π/3

26.6π圓柱的側面積計算公式.利用圓柱的側面積公式求解,該圓柱的側面積為27x1x2=4π,一個底面圓的面積是π,所以該圓柱的表面積為4π+27π=6π.

27.a<c<b

28.12,高三年級應抽人數(shù)為300*40/1000=12。

29.-1,

30.3/49

31.180,

32.三角形的余弦定理.a=c=2,所以A=C=30°,B=120°,所以b2=a2+c2-2accosB=12,所以b=2

33.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2

34.

35.

36.

37.

38.

39.解:(1)設所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當x=0時,y=-4∴直線l在y軸上的截距為-4

40.

41.

42.

43.

44.

45.

∵μ//v∴(2x+1.4)=(2-x,3)得

46.

47.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴數(shù)列為首項b1=32,q=16的等比數(shù)列

48.

49.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。

(2)取BC中點O,以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標系,

50.

51.

52.

53.

54.

55.(1)ABCD-A1B1C1D1為長方體,所以B1D1//BD,又BD包含于平面BC1D,B1D1不包含BC1D,所以B1D1//平面BC1D(2)因為ABCD-A1B1C1D1為長方體,CC1⊥平面ABCD,所以BC為BC1在平面ABCD內(nèi)的射影,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論