版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022年安徽省蚌埠市普通高校對口單招數(shù)學(xué)自考真題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.同時擲兩枚質(zhì)地均勻的硬幣,則至少有一枚出現(xiàn)正面的概率是()A.lB.3/4C.1/2D.1/4
3.已知互為反函數(shù),則k和b的值分別是()A.2,
B.2,
C.-2,
D.-2,
4.函數(shù)y=|x|的圖像()
A.關(guān)于x軸對稱B.關(guān)于y軸對稱C.關(guān)于原點對稱D.關(guān)于y=x直線對稱
5.實數(shù)4與16的等比中項為A.-8
B.C.8
6.A.
B.
C.
7.袋中裝有4個大小形狀相同的球,其中黑球2個,白球2個,從袋中隨機(jī)抽取2個球,至少有一個白球的概率為()A.
B.
C.
D.
8.A.B.C.D.
9.在正方體ABCD-A1B1C1D1中,二面角D1-AB-D的大小是()A.30°B.60°C.45°D.90°
10.以點(2,0)為圓心,4為半徑的圓的方程為()A.(x-2)2+y2=16
B.(x-2)2+y2=4
C.(x+2)2+y2=46
D.(x+2)2+y2=4
11.執(zhí)行如圖的程序框圖,那么輸出S的值是()A.-1B.1/2C.2D.1
12.A.B.C.D.R
13.“x=-1”是“x2-1=0”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件
14.已知集合A={x|x>2},B={x|1<x<3},則A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}
15.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是A.B.C.D.y=3x
16.設(shè)a=log32,b=log52,c=log23,則()A.a>c>bB.b>c>aC.c>b>aD.c>a>b
17.直線l:x-2y+2=0過橢圓的左焦點F1和上頂點B,該橢圓的離心率為()A.1/5
B.2/5
C.
D.
18.A.3B.8C.1/2D.4
19.若tanα>0,則()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0
20.已知角α的終邊經(jīng)過點P(2,-1),則(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3
二、填空題(10題)21.
22.
23.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:4,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A種型號產(chǎn)品有6件,那么n=
。
24.
25.(x+2)6的展開式中x3的系數(shù)為
。
26.從某校隨機(jī)抽取100名男生,其身高的頻率分布直方圖如下,則身高在[166,182]內(nèi)的人數(shù)為____.
27.若△ABC中,∠C=90°,,則=
。
28.若向量a=(2,-3)與向量b=(-2,m)共線,則m=
。
29.不等式的解集為_____.
30.若lgx=-1,則x=______.
三、計算題(5題)31.近年來,某市為了促進(jìn)生活垃圾的分類處理,將生活垃圾分為“廚余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四類,并分別垛置了相應(yīng)的垃圾箱,為調(diào)查居民生活垃圾的正確分類投放情況,現(xiàn)隨機(jī)抽取了該市四類垃圾箱總計100噸生活垃圾,數(shù)據(jù)統(tǒng)計如下(單位:噸):(1)試估計“可回收垃圾”投放正確的概率;(2)試估計生活垃圾投放錯誤的概率。
32.已知函數(shù)f(x)的定義域為{x|x≠0},且滿足.(1)求函數(shù)f(x)的解析式;(2)判斷函數(shù)f(x)的奇偶性,并簡單說明理由.
33.設(shè)函數(shù)f(x)既是R上的減函數(shù),也是R上的奇函數(shù),且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范圍.
34.己知直線l與直線y=2x+5平行,且直線l過點(3,2).(1)求直線l的方程;(2)求直線l在y軸上的截距.
35.從含有2件次品的7件產(chǎn)品中,任取2件產(chǎn)品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
四、簡答題(10題)36.求證
37.設(shè)等差數(shù)列的前n項數(shù)和為Sn,已知的通項公式及它的前n項和Tn.
38.如圖:在長方體從中,E,F(xiàn)分別為和AB和中點。(1)求證:AF//平面。(2)求與底面ABCD所成角的正切值。
39.已知cos=,,求cos的值.
40.等差數(shù)列的前n項和為Sn,已知a10=30,a20=50。(1)求通項公式an。(2)若Sn=242,求n。
41.求到兩定點A(-2,0)(1,0)的距離比等于2的點的軌跡方程
42.設(shè)拋物線y2=4x與直線y=2x+b相交A,B于兩點,弦AB長,求b的值
43.求過點P(2,3)且被兩條直線:3x+4y-7=0,:3x+4y+8=0所截得的線段長為的直線方程。
44.點A是BCD所在平面外的一點,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求證平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
45.三個數(shù)a,b,c成等差數(shù)列,公差為3,又a,b+1,c+6成等比數(shù)列,求a,b,c。
五、證明題(10題)46.如圖所示,四棱錐中P-ABCD,底面ABCD為矩形,點E為PB的中點.求證:PD//平面ACE.
47.
48.△ABC的三邊分別為a,b,c,為且,求證∠C=
49.己知正方體ABCD-A1B1C1D1,證明:直線AC1與直線A1D1所成角的余弦值為.
50.己知sin(θ+α)=sin(θ+β),求證:
51.己知
a
=(-1,2),b
=(-2,1),證明:cos〈a,b〉=4/5.
52.己知x∈(1,10),A=lg2x,B=lgx2,證明:A<B.
53.己知直線l:x+y+4=0且圓心為(1,-1)的圓C與直線l相切。證明:圓C的標(biāo)準(zhǔn)方程為(x-1)2
+(y+1)2
=8.
54.若x∈(0,1),求證:log3X3<log3X<X3.
55.長、寬、高分別為3,4,5的長方體,沿相鄰面對角線截取一個三棱錐(如圖).求證:剩下幾何體的體積為三棱錐體積的5倍.
六、綜合題(2題)56.己知橢圓與拋物線y2=4x有共同的焦點F2,過橢圓的左焦點F1作傾斜角為的直線,與橢圓相交于M、N兩點.求:(1)直線MN的方程和橢圓的方程;(2)△OMN的面積.
57.
(1)求該直線l的方程;(2)求圓心該直線上且與兩坐標(biāo)軸相切的圓的標(biāo)準(zhǔn)方程.
參考答案
1.D
2.B獨立事件的概率.同時擲兩枚質(zhì)地均勻的硬幣,可能的結(jié)果:(正,正),(正,反),(反,正),(反,反)共4種結(jié)果,至少有一枚出現(xiàn)正面的結(jié)果有3種,所求的概率是3/4
3.B因為反函數(shù)的圖像是關(guān)于y=x對稱,所以k=2.然后把一式中的x用y的代數(shù)式表達(dá),再把x,y互換,代入二式,得到m=-3/2.
4.B由于函數(shù)為偶函數(shù),因此函數(shù)圖像關(guān)于y對稱。
5.B
6.B
7.D從中隨即取出2個球,每個球被取到的可能性相同,因此所有的取法為,所取出的的2個球至少有1個白球,所有的取法為,由古典概型公式可知P=5/6.
8.B
9.C
10.A圓的方程.當(dāng)圓心坐標(biāo)為(x0,y0)時,圓的-般方程為(x-x0)2+(y-y0)2=r2.
11.C
12.B
13.A命題的條件.若x=-1則x2=1,若x2=1則x=±1,
14.C集合的運算.由已知條件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}
15.D
16.D數(shù)值大小的比較.a=㏒32<㏒33=l,c=㏒23>㏒22=l,而b=㏒52<㏒1/32=a,∴b<a<c
17.D直線與橢圓的性質(zhì),離心率公式.直線l:x-2y+2=0與x軸的交點F1(-2,0),與y軸的交點B(0,1),由于橢圓的左焦點為F1,上頂點為B,則c=2,b=1,∴a=
18.A
19.C三角函數(shù)值的符號.由tanα>0,可得α的終邊在第一象限或第三象限,此時sinα與cosα同號,故sin2α=2sinαcosα>0
20.D三角函數(shù)的化簡求值.三角函數(shù)的定義.因為角a終邊經(jīng)過點P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3
21.0.4
22.-3由于cos(x+π/6)的最小值為-1,所以函數(shù)f(x)的最小值為-3.
23.72
24.x+y+2=0
25.160
26.64,在[166,182]區(qū)間的身高頻率為(0.050+0.030)×8(組距)=0.64,因此人數(shù)為100×0.64=64。
27.0-16
28.3由于兩向量共線,所以2m-(-2)(-3)=0,得m=3.
29.-1<X<4,
30.1/10對數(shù)的運算.x=10-1=1/10
31.
32.
33.解:(1)因為f(x)=在R上是奇函數(shù)所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因為f(x)=在R上是減函數(shù),t2-3t+1<-1所以1<t<2
34.解:(1)設(shè)所求直線l的方程為:2x-y+c=0∵直線l過點(3,2)∴6-2+c=0即c=-4∴所求直線l的方程為:2x-y-4=0(2)∵當(dāng)x=0時,y=-4∴直線l在y軸上的截距為-4
35.
36.
37.(1)∵
∴又∵等差數(shù)列∴∴(2)
38.
39.
40.
41.
42.由已知得整理得(2x+m)2=4x即∴再根據(jù)兩點間距離公式得
43.x-7y+19=0或7x+y-17=0
44.分析:本題考查面面垂直的證明,考查二面角的正切值的求法。(1)推導(dǎo)出CD⊥AB,AB⊥AC,由此能證明平面ABD⊥平面ACD。
(2)取BC中點O,以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-BD-C的正切值。解答:證明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中點O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O(shè)為原點,過O作CD的平行線為x軸,OC為y軸,OA為z軸,建立空間直角坐標(biāo)系,
45.由已知得:由上可解得
46.
∴PD//平面ACE.
47.
48.
49.
50.
51.
52.證明:考慮對數(shù)函數(shù)y=lgx的限制知
:當(dāng)x∈(1,10)時,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴l(xiāng)gx-2<0A-B<0∴A<B
53.
54.
55.證明:根據(jù)該幾何體的特征,可知所剩的幾何體的體積為長方體的體積減去所截的三棱錐的體積,即
5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 搪瓷瓷釉制作工崗前技術(shù)傳承考核試卷含答案
- 汽輪機(jī)裝配調(diào)試工崗前理論考核試卷含答案
- 復(fù)混肥生產(chǎn)工崗前品質(zhì)考核試卷含答案
- 醫(yī)生外出學(xué)習(xí)請假條
- 2025年新能源環(huán)衛(wèi)裝備合作協(xié)議書
- 2025年聚芳酯PAR項目發(fā)展計劃
- 2025年P(guān)URL系列反應(yīng)型皮革用聚氨酯乳液合作協(xié)議書
- 2026年新能源汽車換電模式項目可行性研究報告
- 2025年煤化工考試試題及答案
- 清水混凝土模板支撐施工方案
- 2026年藥店培訓(xùn)計劃試題及答案
- 2026春招:中國煙草真題及答案
- 物流鐵路專用線工程節(jié)能評估報告
- 2026河南省氣象部門招聘應(yīng)屆高校畢業(yè)生14人(第2號)參考題庫附答案
- 2026天津市南開區(qū)衛(wèi)生健康系統(tǒng)招聘事業(yè)單位60人(含高層次人才)備考核心試題附答案解析
- 五年級上冊道德與法治期末測試卷新版
- 2022年醫(yī)學(xué)專題-石家莊中國鮑曼不動桿菌感染診治與防控專家共識
- YY/T 1543-2017鼻氧管
- YS/T 903.1-2013銦廢料化學(xué)分析方法第1部分:銦量的測定EDTA滴定法
- FZ/T 70010-2006針織物平方米干燥重量的測定
- 高血壓的血流動力學(xué)基礎(chǔ)課件
評論
0/150
提交評論