北京師范大亞太實驗校2023屆中考數(shù)學(xué)猜題卷含解析_第1頁
北京師范大亞太實驗校2023屆中考數(shù)學(xué)猜題卷含解析_第2頁
北京師范大亞太實驗校2023屆中考數(shù)學(xué)猜題卷含解析_第3頁
北京師范大亞太實驗校2023屆中考數(shù)學(xué)猜題卷含解析_第4頁
北京師范大亞太實驗校2023屆中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,的頂點是正方形網(wǎng)格的格點,則的值為()A. B. C. D.2.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段AC的長為()A.4 B.4 C.6 D.43.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.如圖,等邊△ABC內(nèi)接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(

)A.

B.

C.

D.5.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.6.點M(a,2a)在反比例函數(shù)y=的圖象上,那么a的值是()A.4 B.﹣4 C.2 D.±27.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標志中,是軸對稱圖形的是()A. B. C. D.8.如圖是一個幾何體的主視圖和俯視圖,則這個幾何體是()A.三棱柱 B.正方體 C.三棱錐 D.長方體9.下列計算,正確的是()A. B.C.3 D.10.下列計算正確的是()A.2a2﹣a2=1 B.(ab)2=ab2 C.a(chǎn)2+a3=a5 D.(a2)3=a6二、填空題(本大題共6個小題,每小題3分,共18分)11.如果拋物線y=(k﹣2)x2+k的開口向上,那么k的取值范圍是_____.12.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.13.如圖,AB是⊙O的直徑,CD是⊙O的弦,∠BAD=60°,則∠ACD=_____°.14.“五一勞動節(jié)”,王老師將全班分成六個小組開展社會實踐活動,活動結(jié)束后,隨機抽取一個小組進行匯報展示.第五組被抽到的概率是___.15.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標為5,BE=3DE,則k的值為______.16.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經(jīng)過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當AC=2,CD=1時,求⊙O的面積.18.(8分)小強的媽媽想在自家的院子里用竹籬笆圍一個面積為4平方米的矩形小花園,媽媽問九年級的小強至少需要幾米長的竹籬笆(不考慮接縫).小強根據(jù)他學(xué)習(xí)函數(shù)的經(jīng)驗做了如下的探究.下面是小強的探究過程,請補充完整:建立函數(shù)模型:設(shè)矩形小花園的一邊長為x米,籬笆長為y米.則y關(guān)于x的函數(shù)表達式為________;列表(相關(guān)數(shù)據(jù)保留一位小數(shù)):根據(jù)函數(shù)的表達式,得到了x與y的幾組值,如下表:x0.511.522.533.544.55y17108.38.28.79.310.811.6描點、畫函數(shù)圖象:如圖,在平面直角坐標系xOy中,描出了以上表中各對對應(yīng)值為坐標的點,根據(jù)描出的點畫出該函數(shù)的圖象;觀察分析、得出結(jié)論:根據(jù)以上信息可得,當x=________時,y有最小值.由此,小強確定籬笆長至少為________米.19.(8分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.20.(8分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.21.(8分)甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時間x(小時)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:當轎車剛到乙地時,此時貨車距離乙地千米;當轎車與貨車相遇時,求此時x的值;在兩車行駛過程中,當轎車與貨車相距20千米時,求x的值.22.(10分)如圖,在矩形ABCD中,對角線AC,BD相交于點O.畫出△AOB平移后的三角形,其平移后的方向為射線AD的方向,平移的距離為AD的長.觀察平移后的圖形,除了矩形ABCD外,還有一種特殊的平行四邊形?請證明你的結(jié)論.23.(12分)已知:如圖,一次函數(shù)與反比例函數(shù)的圖象有兩個交點和,過點作軸,垂足為點;過點作軸,垂足為點,且,連接.求,,的值;求四邊形的面積.24.先化簡代數(shù)式,再從﹣1,0,3中選擇一個合適的a的值代入求值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

連接CD,求出CD⊥AB,根據(jù)勾股定理求出AC,在Rt△ADC中,根據(jù)銳角三角函數(shù)定義求出即可.【詳解】解:連接CD(如圖所示),設(shè)小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【點睛】本題考查了勾股定理,銳角三角形函數(shù)的定義,等腰三角形的性質(zhì),直角三角形的判定的應(yīng)用,關(guān)鍵是構(gòu)造直角三角形.2、B【解析】

由已知條件可得,可得出,可求出AC的長.【詳解】解:由題意得:∠B=∠DAC,∠ACB=∠ACD,所以,根據(jù)“相似三角形對應(yīng)邊成比例”,得,又AD是中線,BC=8,得DC=4,代入可得AC=,故選B.【點睛】本題主要考查相似三角形的判定與性質(zhì).靈活運用相似的性質(zhì)可得出解答.3、B【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【點睛】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.4、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質(zhì)、扇形面積公式是解題的關(guān)鍵.5、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關(guān)鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖重合.6、D【解析】

根據(jù)點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,然后解方程即可求解.【詳解】因為點M(a,2a)在反比例函數(shù)y=的圖象上,可得:,,解得:,故選D.【點睛】本題主要考查反比例函數(shù)圖象的上點的特征,解決本題的關(guān)鍵是要熟練掌握反比例函數(shù)圖象上點的特征.7、D【解析】

根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.8、A【解析】【分析】根據(jù)三視圖的知識使用排除法即可求得答案.【詳解】如圖,由主視圖為三角形,排除了B、D,由俯視圖為長方形,可排除C,故選A.【點睛】本題考查了由三視圖判斷幾何體的知識,做此類題時可利用排除法解答.9、B【解析】

根據(jù)二次根式的加減法則,以及二次根式的性質(zhì)逐項判斷即可.【詳解】解:∵=2,∴選項A不正確;∵=2,∴選項B正確;∵3﹣=2,∴選項C不正確;∵+=3≠,∴選項D不正確.故選B.【點睛】本題主要考查了二次根式的加減法,以及二次根式的性質(zhì)和化簡,要熟練掌握,解答此題的關(guān)鍵是要明確:二次根式相加減,先把各個二次根式化成最簡二次根式,再把被開方數(shù)相同的二次根式進行合并,合并方法為系數(shù)相加減,根式不變.10、D【解析】

根據(jù)合并同類項法則判斷A、C;根據(jù)積的乘方法則判斷B;根據(jù)冪的乘方法判斷D,由此即可得答案.【詳解】A、2a2﹣a2=a2,故A錯誤;B、(ab)2=a2b2,故B錯誤;C、a2與a3不是同類項,不能合并,故C錯誤;D、(a2)3=a6,故D正確,故選D.【點睛】本題考查冪的乘方與積的乘方,合并同類項,熟練掌握各運算的運算性質(zhì)和運算法則是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、k>2【解析】

根據(jù)二次函數(shù)的性質(zhì)可知,當拋物線開口向上時,二次項系數(shù)k﹣2>1.【詳解】因為拋物線y=(k﹣2)x2+k的開口向上,所以k﹣2>1,即k>2,故答案為k>2.【點睛】本題考查二次函數(shù),解題的關(guān)鍵是熟練運用二次函數(shù)的圖象與性質(zhì),本題屬于中等題型.12、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.13、1【解析】

連接BD.根據(jù)圓周角定理可得.【詳解】解:如圖,連接BD.∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案為1.【點睛】考核知識點:圓周角定理.理解定義是關(guān)鍵.14、【解析】

根據(jù)概率是所求情況數(shù)與總情況數(shù)之比,可得答案.【詳解】因為共有六個小組,所以第五組被抽到的概率是,故答案為:.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.15、【解析】

過點D作DF⊥BC于點F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關(guān)鍵.16、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質(zhì)三、解答題(共8題,共72分)17、(1)證明見解析;(2)2516【解析】

(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內(nèi)錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;

(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據(jù)勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質(zhì),圓周角定理,相似三角形的判定與性質(zhì),以及勾股定理,熟練掌握相關(guān)性質(zhì)是解本題的關(guān)鍵.18、見解析【解析】

根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x,由x═()2+4可得當x=2,y有最小值,則可求籬笆長.【詳解】根據(jù)題意:一邊為x米,面積為4,則另一邊為米,籬笆長為y=2(x)=2x∵x()2+()2=()2+4,∴x4,∴2x1,∴當x=2時,y有最小值為1,由此小強確定籬笆長至少為1米.故答案為:y=2x,2,1.【點睛】本題考查了反比例函數(shù)的應(yīng)用,完全平方公式的運用,關(guān)鍵是熟練運用完全平方公式.19、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據(jù)四邊形的內(nèi)角和為360°,結(jié)合已知條件可得∠OBP=90°得證;(2)連接OP,根據(jù)切線長定理得直角三角形,根據(jù)含30度角的直角三角形的性質(zhì)即可求得結(jié)果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內(nèi)角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點B是⊙O上的一點,∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點:此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質(zhì)點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.20、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】

(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設(shè)直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設(shè)直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關(guān)鍵.21、(1)30;(2)當x=3.9時,轎車與貨車相遇;(3)在兩車行駛過程中,當轎車與貨車相距20千米時,x的值為3.5或4.3小時.【解析】

(1)根據(jù)圖象可知貨車5小時行駛300千米,由此求出貨車的速度為60千米/時,再根據(jù)圖象得出貨車出發(fā)后4.5小時轎車到達乙地,由此求出轎車到達乙地時,貨車行駛的路程為270千米,而甲、乙兩地相距300千米,則此時貨車距乙地的路程為:300﹣270=30千米;(2)先求出線段CD對應(yīng)的函數(shù)關(guān)系式,再根據(jù)兩直線的交點即可解答;(3)分兩種情形列出方程即可解決問題.【詳解】解:(1)根據(jù)圖象信息:貨車的速度V貨=,∵轎車到達乙地的時間為貨車出發(fā)后4.5小時,∴轎車到達乙地時,貨車行駛的路程為:4.5×60=270(千米),此時,貨車距乙地的路程為:300﹣270=30(千米).所以轎車到達乙地后,貨車距乙地30千米.故答案為30;(2)設(shè)CD段函數(shù)解析式為y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其圖象上,,解得,∴CD段函數(shù)解析式:y=110x﹣195(2.5≤x≤4.5);易得OA:y=60x,,解得,∴當x=3.9時,轎車與貨車相遇;(3)當x=2.5時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論