版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.2.設(shè)集合,則()A. B. C. D.3.在△ABC中,sinA:sinB:sinC=4:3:2,則cosA的值是()A. B. C. D.4.在△ABC中,角所對的邊分別為,且則最大角為()A. B. C. D.5.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.26.若變量,且滿足約束條件,則的最大值為()A.15 B.12 C.3 D.7.若則所在象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知A(2,4)與B(3,3)關(guān)于直線l對稱,則直線l的方程為().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=09.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為A. B. C. D.10.圓心為且過原點的圓的方程是()A.B.C.D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知都是銳角,,則=_____12.如果是奇函數(shù),則=.13.已知函數(shù),若,則的取值圍為_________.14.若銳角滿足則______.15.函數(shù)的值域為_____________.16.若角的終邊經(jīng)過點,則___________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在△中,角、、所對的邊分別為、、,且.(1)求的值;(2)若,求的最大值;(3)若,,為的中點,求線段的長度.18.△ABC的內(nèi)角A,B,C所對邊分別為,已知△ABC面積為.(1)求角C;(2)若D為AB中點,且c=2,求CD的最大值.19.已知直線,,是三條不同的直線,其中.(1)求證:直線恒過定點,并求出該點的坐標(biāo);(2)若以,的交點為圓心,為半徑的圓與直線相交于兩點,求的最小值.20.如圖,在平面直角坐標(biāo)系中,單位圓上存在兩點,滿足均與軸垂直,設(shè)與的面積之和記為.若,求的值;若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.21.某“雙一流A類”大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:(1)為感謝同學(xué)們對這項調(diào)查工作的支持,該校利用分層抽樣的方法從樣本的前兩組中抽出6人,各贈送一份禮品,并從這6人中再抽取2人,各贈送某款智能手機(jī)1部,求獲贈智能手機(jī)的2人月薪都不低于1.75萬元的概率;(2)同一組數(shù)據(jù)用該區(qū)間的中點值作代表.(i)求這100人月薪收入的樣本平均數(shù)x和樣本方差s2(ii)該校在某地區(qū)就業(yè)的本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:方案一:設(shè)Ω=[x-s-0.018,x+s+0.018),月薪落在區(qū)間Ω左側(cè)的每人收取400元,月薪落在區(qū)間方案二:按每人一個月薪水的3%收??;用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費方案能收到更多的費用?參考數(shù)據(jù):174≈13.2
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
通過三視圖可以判斷這一個是半個圓柱與半個圓錐形成的組合體,利用圓柱和圓錐的體積公式可以求出這個組合體的體積.【詳解】該幾何體為半個圓柱與半個圓錐形成的組合體,故,故選C.【點睛】本題考查了利用三視圖求組合體圖形的體積,考查了運算能力和空間想象能力.2、B【解析】試題分析:由已知得,,故,選B.考點:集合的運算.3、A【解析】
由正弦定理可得,再結(jié)合余弦定理求解即可.【詳解】解:因為在△ABC中,sinA:sinB:sinC=4:3:2,由正弦定理可得,不妨令,由余弦定理可得,故選:A.【點睛】本題考查了正弦定理及余弦定理,重點考查了運算能力,屬基礎(chǔ)題.4、C【解析】
根據(jù)正弦定理可得三邊的比例關(guān)系;由大邊對大角可知最大,利用余弦定理求得余弦值,從而求得角的大小.【詳解】由正弦定理可得:設(shè),,最大為最大角本題正確選項:【點睛】本題考查正弦定理、余弦定理的應(yīng)用,涉及到三角形中大邊對大角的關(guān)系,屬于基礎(chǔ)題.5、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點時,直線在軸上的截距最大,最大值為,故選B.【點睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6、A【解析】
作出可行域,采用平移直線法判斷何處取到最大值.【詳解】畫出可行域如圖陰影部分,由得,目標(biāo)函數(shù)圖象可看作一條動直線,由圖形可得當(dāng)動直線過點時,.故選A.【點睛】本題考查線性規(guī)劃中線性目標(biāo)函數(shù)最值的計算,難度較易.求解線性目標(biāo)函數(shù)的最值時,采用平移直線法是最常規(guī)的.7、C【解析】
根據(jù)已知不等式可得,;根據(jù)各象限內(nèi)三角函數(shù)的符號可確定角所處的象限.【詳解】由知:,在第三象限故選:【點睛】本題考查三角函數(shù)在各象限內(nèi)的符號,屬于基礎(chǔ)題.8、C【解析】試題分析:兩點關(guān)于直線對稱,則,點與的中點在直線上,,那么直線的斜率等于,中點坐標(biāo)為,即中點坐標(biāo)為,,整理得:,故選C.考點:求直線方程9、B【解析】
分析:作圖,D為MO與球的交點,點M為三角形ABC的中心,判斷出當(dāng)平面時,三棱錐體積最大,然后進(jìn)行計算可得.詳解:如圖所示,點M為三角形ABC的中心,E為AC中點,當(dāng)平面時,三棱錐體積最大此時,,點M為三角形ABC的中心中,有故選B.點睛:本題主要考查三棱錐的外接球,考查了勾股定理,三角形的面積公式和三棱錐的體積公式,判斷出當(dāng)平面時,三棱錐體積最大很關(guān)鍵,由M為三角形ABC的重心,計算得到,再由勾股定理得到OM,進(jìn)而得到結(jié)果,屬于較難題型.10、D【解析】試題分析:設(shè)圓的方程為,且圓過原點,即,得,所以圓的方程為.故選D.考點:圓的一般方程.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由已知求出,再由兩角差的正弦公式計算.【詳解】∵都是銳角,∴,又,∴,,∴.故答案為.【點睛】本題考查兩角和與差的正弦公式.考查同角間的三角函數(shù)關(guān)系.解題關(guān)鍵是角的變換,即.這在三角函數(shù)恒等變換中很重要,即解題時要觀察“已知角”和“未知角”的關(guān)系,根據(jù)這個關(guān)系選用相應(yīng)的公式計算.12、-2【解析】試題分析:∵,∴,∴,∴=-2考點:本題考查了三角函數(shù)的性質(zhì)點評:對于定義域為R的奇函數(shù)恒有f(0)=0.利用此結(jié)論可解決此類問題13、【解析】
由函數(shù),根據(jù),得到,再由,得到,結(jié)合余弦函數(shù)的性質(zhì),即可求解.【詳解】由題意,函數(shù),又由,即,即,因為,則,所以或,即或,所以實數(shù)的取值圍為.故答案為:.【點睛】本題主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟練應(yīng)用余弦函數(shù)的性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.14、【解析】
由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計算得解.【詳解】、為銳角,,,,,,.故答案為:.【點睛】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.15、【解析】
分析函數(shù)在區(qū)間上的單調(diào)性,由此可求出該函數(shù)在區(qū)間上的值域.【詳解】由于函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),所以,函數(shù)在區(qū)間上也為增函數(shù),且,,當(dāng)時,,因此,函數(shù)的值域為.故答案為:.【點睛】本題考查函數(shù)值域的求解,解題的關(guān)鍵就是判斷出函數(shù)的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.16、3【解析】
直接根據(jù)任意角三角函數(shù)的定義求解,再利用兩角和的正切展開代入求解即可【詳解】由任意角三角函數(shù)的定義可得:.則故答案為3【點睛】本題主要考查了任意角三角函數(shù)的定義和兩角和的正切計算,熟記公式準(zhǔn)確計算是關(guān)鍵,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解析】
(1)由三角恒等變換的公式,化簡,代入即可求解.(2)在中,由余弦定理,結(jié)合基本不等式,求得,即可得到答案.(3)設(shè),在中,由余弦定理,求得,分別在和中,利用余弦定理,列出方程,即可求解.【詳解】(1)由題意,在中,,則又由.(2)在中,由余弦定理可得,即,可得,當(dāng)且僅當(dāng)?shù)忍柍闪ⅲ缘淖畲笾禐?(3)設(shè),如圖所示,在中,由余弦定理可得,即,即,解得,在中,由余弦定理,可得,……①在中,由余弦定理,可得,……②因為,所以,由①+②,可得,即,解得,即.【點睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,同角三角函數(shù)基本關(guān)系式,余弦定理在解三角形中的綜合應(yīng)用,其中解答中熟記三角恒等變換的公式,以及合理應(yīng)用正弦定理、余弦定理求解是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想與運算、求解能力,屬于基礎(chǔ)題.18、(1)(2)【解析】
(1)根據(jù),由正弦定理化角為邊,得,再根據(jù)余弦定理即可求出角C;(2)由余弦定理可得,又,結(jié)合基本不等式可求得.由中點公式的向量式得,再利用數(shù)量積的運算,即可求出的最大值.【詳解】(1)依題意得,,由正弦定理得,,即,由余弦定理得,,又因為,所以.(2)∵,,∴,即.∵為中點,所以,∴當(dāng)且僅當(dāng)時,等號成立.所以的最大值為.【點睛】本題主要考查利用正、余弦定理解三角形,以及利用中點公式的向量式結(jié)合基本不等式解決中線的最值問題,意在考查學(xué)生的邏輯推理和數(shù)學(xué)運算能力,屬于中檔題.19、(1)證明見解析;定點坐標(biāo);(2)【解析】
(1)將整理為:,可得方程組,從而求得定點;(2)直線方程聯(lián)立求得圓心坐標(biāo),將問題轉(zhuǎn)化為求圓心到直線距離的最大值的問題,根據(jù)圓的性質(zhì)可知最大值為,從而求得最小值.【詳解】(1)證明:,可化為:令,解得:,直線恒過定點(2)將,聯(lián)立可得交點坐標(biāo)設(shè)到直線的距離為,則則求的最小值,即求的最大值由(1)知,直線恒過點,則最大時,,即【點睛】本題考查直線過定點問題的求解、直線被圓截得弦長的最值的求解,關(guān)鍵是能夠根據(jù)圓的性質(zhì)確定求解弦長的最小值即為求解圓心到直線距離的最大值,求得最大值從而代入求得弦長最小值.20、(1)或(2)【解析】
(1)運用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調(diào)性,討論的范圍,即可得到的取值范圍.【詳解】依題意,可得,由,得,又,所以.由得因為,所以,所以,當(dāng)時,,(當(dāng)且僅當(dāng)時,等號成立)又因為對任意,存在,使得成立,所以,即,解得,因為數(shù)列為遞增數(shù)列,且,所以,從而,又,所以,從而,又,①當(dāng)時,,從而,此時與同號,又,即,②當(dāng)時,由于趨向于正無窮大時,與趨向于相等,從而與趨向于相等,即存在正整數(shù),使,從而,此時與異號,與數(shù)列為遞增數(shù)列矛盾,綜上,實數(shù)的取值范圍為.【點睛】本題主要考查了三角函數(shù)的定義,三角函數(shù)的恒等變換,以及不等式恒成立,存在性問題解法和數(shù)列的單調(diào)性的判斷和運用,試題綜合性強,屬于難題,著重考查了推理與運算能力,以及分析問題和解答問題的能力.21、(1)23;(2)(i)2,0.0174【解析】
(1)根據(jù)頻率分布直方圖求出前2組中的人數(shù),由分層抽樣得抽取的人數(shù),然后把6人編號,可寫出任取2人的所有組合,也可得出獲贈智能手機(jī)的2人月薪都不低于1.75萬元的所有組合,從而可計算出概率.(2)根據(jù)頻率分布直方圖計算出均值和方差,然后求出區(qū)間Ω,結(jié)合頻率分布直方圖可計算出兩方案收取的費用.【詳解】(1)第一組有0.2×0.1×100=2人,第二組有1.0×0.1×100=10人.按照分層抽樣抽6人時,第一組抽1人,記為A,第二組抽5人,記為B,C,D,E,F(xiàn).從這6人中抽2人共有15種:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).獲贈智能手機(jī)的2人月薪都不低于1.75萬元的10種:(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F).于是獲贈智能手機(jī)的2人月薪都超過1.75萬元的概率P=10(2)(i)這100人月薪收入的樣本平均數(shù)x和樣本方差s2分別是s2(ii)方案一:s=月
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 培訓(xùn)班教師掛牌制度
- 洋河酒廠培訓(xùn)制度及流程
- 培訓(xùn)班老師考核制度
- 書畫培訓(xùn)班規(guī)章制度
- 印刷廠安全教育培訓(xùn)制度
- 外出駕駛員培訓(xùn)制度
- 學(xué)校師資培訓(xùn)管理制度
- 三筆一話培訓(xùn)制度
- 培訓(xùn)考勤簽到制度
- 人力資源部培訓(xùn)激勵制度
- 天津市重點名校2026屆高一數(shù)學(xué)第一學(xué)期期末統(tǒng)考試題含解析
- 工程車輛銷售合同范本
- 新人抖音直播獎勵制度規(guī)范
- 2026年消防安全評估協(xié)議
- 【小學(xué)】【期末】家長會:孩子在學(xué)校的底氣【課件】
- 鋼結(jié)構(gòu)防腐涂裝工藝方案
- 云上(貴州)數(shù)據(jù)開發(fā)有限公司招聘筆試題庫2026
- 書法美育課件
- 腹壁切口疝教學(xué)課件
- JJF1033-2023計量標(biāo)準(zhǔn)考核規(guī)范
- 動火作業(yè)施工方案模板
評論
0/150
提交評論