版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國古代數(shù)學名著《九章算術》中記載的“芻甍”(chumeng)是底面為矩形,頂部只有一條棱的五面體.如圖,五面體是一個芻甍.四邊形為矩形,與都是等邊三角形,,,則此“芻甍”的表面積為()A. B. C. D.2.已知,,,,則()A. B.C. D.3.已知函數(shù),則下列說法正確的是()A.圖像的對稱中心是B.在定義域內是增函數(shù)C.是奇函數(shù)D.圖像的對稱軸是4.已知不同的兩條直線m,n與不重合的兩平面,,下列說法正確的是()A.若,,則B.若,,則C.若,,則D.若,,則5.過點且與圓相切的直線方程為()A. B.或C.或 D.或6.已知函數(shù),(,,)的部分圖像如圖所示,則、、的一個數(shù)值可以是()A. B.C. D.7.已知向量,,若,則實數(shù)a的值為A. B.2或 C.或1 D.8.如果直線m//直線n,且m//平面α,那么n與αA.相交 B.n//α C.n?α9.已知中,,,,那么角等于()A. B. C.或 D.10.已知向量,,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知是邊長為的等邊三角形,為邊上(含端點)的動點,則的取值范圍是_______.12.已知數(shù)列的首項,其前項和為,且,若單調遞增,則的取值范圍是__________.13.某單位為了了解用電量度與氣溫之間的關系,隨機統(tǒng)計了某天的用電量與當天氣溫.氣溫(℃)141286用電量(度)22263438由表中數(shù)據(jù)得回歸直線方程中,據(jù)此預測當氣溫為5℃時,用電量的度數(shù)約為____.14.在等差數(shù)列中,若,則的前13項之和等于______.15.在中,是斜邊的中點,,,平面,且,則_____.16.在△ABC中,sin2A=sin三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知,且為第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.18.某種汽車,購車費用是10萬元,每年使用的保險費和汽油費為萬元,年維修費第一年為萬元,以后逐年遞增萬元,問這種汽車使用多少年時,它的年平均費用最少?19.已知函數(shù)的定義域為R(1)求的取值范圍;(2)若函數(shù)的最小值為,解關于的不等式。20.如圖,在平面直角坐標系中,單位圓上存在兩點,滿足均與軸垂直,設與的面積之和記為.若,求的值;若對任意的,存在,使得成立,且實數(shù)使得數(shù)列為遞增數(shù)列,其中求實數(shù)的取值范圍.21.已知.若三點共線,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
分別計算出每個面積,相加得到答案.【詳解】故答案選A【點睛】本題考查了圖像的表面積,意在考查學生的計算能力.2、C【解析】
分別求出的值再帶入即可.【詳解】因為,所以因為,所以所以【點睛】本題考查兩角差的余弦公式.屬于基礎題.3、A【解析】
根據(jù)正切函數(shù)的圖象與性質逐一判斷即可.【詳解】.,由得,,的對稱中心為,,故正確;.在定義域內不是增函數(shù),故錯誤;.為非奇非偶函數(shù),故錯誤;.的圖象不是軸對稱圖形,故錯誤.故選.【點睛】本題考查了正切函數(shù)的圖象與性質,考查了整體思想,意在考查學生對這些知識的理解掌握水平,屬基礎題.4、C【解析】
依次判斷每個選項的正誤得到答案.【詳解】若,,則或A錯誤.若,,則或,B錯誤若,,則,正確若,,則或,D錯誤故答案選C【點睛】本題考查了線面關系,找出反例是解題的關鍵.5、C【解析】
分別考慮斜率存在和不存在兩種情況得到答案.【詳解】如圖所示:當斜率不存在時:當斜率存在時:設故答案選C【點睛】本題考查了圓的切線問題,忽略掉斜率不存在是容易發(fā)生的錯誤.6、A【解析】
從圖像易判斷,再由圖像判斷出函數(shù)周期,根據(jù),將代入即可求得【詳解】根據(jù)正弦函數(shù)圖像的性質可得,由,,又因為圖像過,代入函數(shù)表達式可得,即,,解得故選:A【點睛】本題考查三角函數(shù)圖像與性質的應用,函數(shù)圖像的識別,屬于中檔題7、C【解析】
根據(jù)題意,由向量平行的坐標表示公式可得,解可得a的值,即可得答案.【詳解】根據(jù)題意,向量,,若,則有,解可得或1;故選C.【點睛】本題考查向量平行的坐標表示方法,熟記平行的坐標表示公式得到關于a的方程是關鍵,是基礎題8、D【解析】
利用直線與平面平行的判定定理和直線與平面平行的性質進行判斷即可.【詳解】∵直線m/直線n,且m/平面∴當n不在平面α內時,平面α內存在直線m'//m?n//m',符合線面平行的判定定理可得n/平面α當n在平面α內時,也符合條件,n與α的位置關系是n//α或【點睛】本題主要考查線面平行的判定定理以及線面平行的性質,意在考查對基本定理掌握的熟練程度,屬于基礎題.9、B【解析】
先由正弦定理求出,進而得出角,再根據(jù)大角對大邊,大邊對大角確定角.【詳解】由正弦定理得:,,∴或,∵,∴,∴,故選B.【點睛】本題主要考查正弦定理的應用以及大邊對大角,大角對大邊的三角形邊角關系的應用.10、D【解析】
利用平面向量垂直的坐標等價條件列等式求出實數(shù)的值.【詳解】,,,,解得,故選D.【點睛】本題考查向量垂直的坐標表示,解題時將向量垂直轉化為兩向量的數(shù)量積為零來處理,考查計算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
取的中點為坐標原點,、所在直線分別為軸、軸建立平面直角坐標系,設點的坐標為,其中,利用數(shù)量積的坐標運算將轉化為有關的一次函數(shù)的值域問題,可得出的取值范圍.【詳解】如下圖所示:取的中點為坐標原點,、所在直線分別為軸、軸建立平面直角坐標系,則點、、,設點,其中,,,,因此,的取值范圍是,故答案為.【點睛】本題考查平面向量數(shù)量積的取值范圍,可以利用基底向量法以及坐標法求解,在建系時應充分利用對稱性來建系,另外就是注意將動點所在的直線變?yōu)樽鴺溯S,可簡化運算,考查運算求解能力,屬于中等題.12、【解析】由可得:兩式相減得:兩式相減可得:數(shù)列,,...是以為公差的等差數(shù)列,數(shù)列,,...是以為公差的等差數(shù)列將代入及可得:將代入可得要使得,恒成立只需要即可解得則的取值范圍是點睛:本題考查了數(shù)列的遞推關系求通項,在含有的條件中,利用來求通項,本題利用減法運算求出數(shù)列隔一項為等差數(shù)列,結合和數(shù)列為增數(shù)列求出結果,本題需要利用條件遞推,有一點難度.13、1【解析】
由表格得,即樣本中心點的坐標為,又因為樣本中心點在回歸方程上且,解得:,當時,,故答案為1.考點:回歸方程【名師點睛】本題考查線性回歸方程,屬容易題.兩個變量之間的關系,除了函數(shù)關系,還存在相關關系,通過建立回歸直線方程,就可以根據(jù)其部分觀測值,獲得對這兩個變量之間整體關系的了解.解題時根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個確定的方程,根據(jù)所給的的值,代入線性回歸方程,預報要銷售的件數(shù).14、【解析】
根據(jù)題意,以及等差數(shù)列的性質,先得到,再由等差數(shù)列的求和公式,即可求出結果.【詳解】因為是等差數(shù)列,,所以,即,記前項和為,則.故答案為:【點睛】本題主要考查等差數(shù)列前項和的基本量的運算,熟記等差數(shù)列的性質以及求和公式即可,屬于基礎題型.15、【解析】
由EC垂直Rt△ABC的兩條直角邊,可知EC⊥面ABC,再根據(jù)D是斜邊AB的中點,AC=6,BC=8,可求得CD的長,根據(jù)勾股定理可求得DE的長.【詳解】如圖,EC⊥面ABC,而CD?面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜邊AB的中點,∴CD=5,ED1.故答案為1.【點睛】本題主要考查了線面垂直的判定和性質定理,利用勾股定理求線段的長度,考查了空間想象能力和推理論證能力,屬于基礎題.16、π【解析】
根據(jù)正弦定理化簡角的關系式,從而湊出cosA【詳解】由正弦定理得:a2=則cos∵A∈0,π本題正確結果:π【點睛】本題考查利用正弦定理和余弦定理解三角形問題,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知利用同角三角函數(shù)基本關系式可求,利用誘導公式,二倍角公式即可計算得解;(Ⅱ)由已知利用二倍角的余弦函數(shù)公式可求cos2α的值,根據(jù)同角三角函數(shù)基本關系式可求tan2α的值,根據(jù)兩角和的正切函數(shù)公式即可計算得解.【詳解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【點睛】本題主要考查了同角三角函數(shù)基本關系式,誘導公式,二倍角公式,兩角和的正切函數(shù)公式在三角函數(shù)化簡求值中的綜合應用,考查了計算能力和轉化思想,屬于基礎題.18、這種汽車使用年時,它的年平均費用最小【解析】
設這種汽車使用年時,它的年平均費用為萬元,則,于是,當,即時,取得最小值,所以這種汽車使用10年時,它的年平均費用最小19、(1);(2)【解析】
(1)由的定義域為可知,,恒成立,即可求出的范圍.(2)結合的范圍,運用配方法,即可求出的值,進而求解不等式.【詳解】(1)由已知可得對,恒成立,當時,恒成立。當時,則有,解得,綜上可知,的取值范圍是[0,1](2)由(1)可知的取值范圍是[0,1]顯然,當時,,不符合.所以,,,由題意得,,,可化為,解得,不等式的解集為?!军c睛】主要考查了一元二次不等式在上恒成立求參數(shù)范圍,配方法以及一元二次不等式求解問題,屬于中檔題.對任意實數(shù)恒成立的條件是;而任意實數(shù)恒成立的條件是.20、(1)或(2)【解析】
(1)運用三角形的面積公式和三角函數(shù)的和差公式,以及特殊角的函數(shù)值,可得所求角;(2)由正弦函數(shù)的值域可得的最大值,再由基本不等式可得的最大值,可得的范圍,再由數(shù)列的單調性,討論的范圍,即可得到的取值范圍.【詳解】依題意,可得,由,得,又,所以.由得因為,所以,所以,當時,,(當且僅當時,等號成立)又因為對任意,存在,使得成立,所以,即,解得,因為數(shù)列為遞增數(shù)列,且,所以,從而,又,所以,從而,又,①當時,,從而,此時與同號,又,即,②當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)員工晉升與調動制度
- 會議宣傳與媒體報道制度
- 2026福建省福州市閩侯縣教育局招聘44人備考題庫附答案
- 2026西安工業(yè)大學招聘參考題庫附答案
- 2026貴州沿河土家族自治縣遴選縣直機關事業(yè)單位19人參考題庫附答案
- 2026重慶九龍新城謝家灣學校招聘備考題庫附答案
- 2026陜西寧強縣漢江源景區(qū)招聘參考題庫附答案
- 中共南充市委政策研究室下屬事業(yè)單位2025年公開選調工作人員的備考題庫附答案
- 樂平市市屬國資控股集團有限公司面向社會公開招聘人員【15人】參考題庫附答案
- 南充市司法局2025年下半年公開遴選公務員(參公人員)公 告(2人)考試備考題庫附答案
- 傳媒企業(yè)保密協(xié)議書
- 第8節(jié)-萬能轉換開關
- 2024學年綿陽中學高二數(shù)學(上)期末考試卷附答案解析
- 人教版六年級數(shù)學上冊《圓的認識》跨學科綜合性作業(yè)設計
- 女性腫瘤患者的生育力保存
- 李四光《看看我們的地球》原文閱讀
- 2024年世界職業(yè)院校技能大賽中職組“工程測量組”賽項考試題庫(含答案)
- 四川省成都市2023-2024學年高一上學期語文期末考試試卷(含答案)
- 設備購買合同模板示例
- 部編人教版 語文 六年級下冊 電子書
- DL-T-5728-2016水電水利工程控制性灌漿施工規(guī)范
評論
0/150
提交評論