版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷考生請注意:1.答題前請將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,角的對邊分別為,若,則的最小值是()A.5 B.8 C.7 D.62.在中,若°,°,.則=A. B. C. D.3.的值等于()A. B. C. D.4.已知,,則()A. B. C. D.5.在數(shù)列an中,a1=1,an=2A.211 B.26.已知不等式的解集為,則不等式的解集為()A. B.C. D.7.已知全集,集合,,則為()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}8.計(jì)算:A. B. C. D.9.已知兩條直線m,n,兩個(gè)平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β10.如圖,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若數(shù)列的前項(xiàng)和為,則該數(shù)列的通項(xiàng)公式為______.12.若是等比數(shù)列,,,且公比為整數(shù),則______.13.在邊長為2的菱形中,,是對角線與的交點(diǎn),若點(diǎn)是線段上的動(dòng)點(diǎn),且點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,則的最小值為______.14.已知直線過點(diǎn),且在兩坐標(biāo)軸上的截距相等,則此直線的方程為_____________.15.圓臺(tái)兩底面半徑分別為2cm和5cm,母線長為cm,則它的軸截面的面積是________cm2.16.在銳角中,內(nèi)角A,B,C所對的邊分別為a,b,c,若的面積為,且,則的周長的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.18.在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.(1)求圓的方程;(2)若圓與直線交于,兩點(diǎn),且,求的值.19.已知函數(shù).(1)求函數(shù)在區(qū)間上的最大值;(2)在中,若,且,求的值.20.已知,為第二象限角.(1)求的值;(2)求的值.21.在凸四邊形中,.(1)若,,,求的大?。?)若,且,求四邊形的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
先化簡條件中的等式,利用余弦定理整理得到等式,然后根據(jù)等式利用基本不等式求解最小值.【詳解】由,得,化簡整理得,,即,當(dāng)且僅當(dāng),即時(shí),取等號(hào).故選D.【點(diǎn)睛】本題考查正、余弦定理在邊角化簡中的應(yīng)用,難度一般.對于利用基本不等求最值的時(shí)候,一定要注意取到等號(hào)的條件.2、A【解析】∵在△ABC中,A=45°,B=60°,a=2,∴由正弦定理得:.本題選擇A選項(xiàng).3、D【解析】
利用誘導(dǎo)公式先化簡,再利用差角的余弦公式化簡得解.【詳解】由題得原式=.故選D【點(diǎn)睛】本題主要考查誘導(dǎo)公式和差角的余弦公式化簡求值,意在考查學(xué)生對這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4、C【解析】
利用二倍角公式變形為,然后利用弦化切的思想求出的值,可得出角的值.【詳解】,化簡得,,則,,因此,,故選C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查弦切互化思想的應(yīng)用,考查給值求角的問題,著重考查學(xué)生對三角恒等變換思想的應(yīng)用能力,屬于中等題.5、D【解析】
將a1=1代入遞推公式可得a2,同理可得出a【詳解】∵a1=1,an=22an-1-1(【點(diǎn)睛】本題用將a16、A【解析】
根據(jù)一元二次不等式的解集與一元二次方程根的關(guān)系,結(jié)合韋達(dá)定理可構(gòu)造方程求得;利用一元二次不等式的解法可求得結(jié)果.【詳解】的解集為和是方程的兩根,且,解得:解得:,即不等式的解集為故選:【點(diǎn)睛】本題考查一元二次不等式的解法、一元二次不等式的解集與一元二次方程根的關(guān)系等知識(shí)的應(yīng)用;關(guān)鍵是能夠通過一元二次不等式的解集確定一元二次方程的根,進(jìn)而利用韋達(dá)定理構(gòu)造方程求得變量.7、C【解析】
先根據(jù)全集U求出集合A的補(bǔ)集,再求與集合B的并集.【詳解】由題得,故選C.【點(diǎn)睛】本題考查集合的運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
根據(jù)正弦余弦的二倍角公式化簡求解.【詳解】,故選A.【點(diǎn)睛】本題考查三角函數(shù)的恒等變化,關(guān)鍵在于尋找題目與公式的聯(lián)系.9、D【解析】
在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個(gè)平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯(cuò)誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯(cuò)誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯(cuò)誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點(diǎn)評(píng)】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.10、B【解析】,,.選B.點(diǎn)睛:空間幾何體體積問題的常見類型及解題策略(1)若所給定的幾何體是可直接用公式求解的柱體、錐體或臺(tái)體,則可直接利用公式進(jìn)行求解.(2)若所給定的幾何體的體積不能直接利用公式得出,則常用轉(zhuǎn)換法、分割法、補(bǔ)形法等方法進(jìn)行求解.(3)若以三視圖的形式給出幾何體,則應(yīng)先根據(jù)三視圖得到幾何體的直觀圖,然后根據(jù)條件求解.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,可得出,再令,可計(jì)算出,然后檢驗(yàn)是否滿足在時(shí)的表達(dá)式,由此可得出數(shù)列的通項(xiàng)公式.【詳解】由題意可知,當(dāng)時(shí),;當(dāng)時(shí),.又不滿足.因此,.故答案為:.【點(diǎn)睛】本題考查利用求,一般利用來計(jì)算,但要對是否滿足進(jìn)行檢驗(yàn),考查運(yùn)算求解能力,屬于中等題.12、512【解析】
由題設(shè)條件知和是方程的兩個(gè)實(shí)數(shù)根,解方程并由公比q為整數(shù),知,,由此能夠求出公比,從而得到.【詳解】是等比數(shù)列,
,,
,,
和是方程的兩個(gè)實(shí)數(shù)根,
解方程,
得,,
公比q為整數(shù),
,,
,解得,
.故答案為:512【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式的求法,利用了等比數(shù)列下標(biāo)和的性質(zhì),是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.13、-6【解析】
由題意,然后結(jié)合向量共線及數(shù)量積運(yùn)算可得,再將已知條件代入求解即可.【詳解】解:菱形的對稱性知,在線段上,且,設(shè),則,所以,又因?yàn)?,?dāng)時(shí),取得最小值-6.故答案為:-6.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,重點(diǎn)考查了向量共線及數(shù)量積運(yùn)算,屬中檔題.14、或【解析】
分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)出該直線的方程為,把已知點(diǎn)坐標(biāo)代入即可求出的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為,把已知點(diǎn)的坐標(biāo)代入即可求出的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.【詳解】解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為,把代入所設(shè)的方程得:,則所求直線的方程為即;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為,把代入所求的方程得:,則所求直線的方程為即.綜上,所求直線的方程為:或.故答案為:或【點(diǎn)睛】此題考查學(xué)生會(huì)根據(jù)條件設(shè)出直線的截距式方程和點(diǎn)斜式方程,考查了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.15、63【解析】
首先畫出軸截面,然后結(jié)合圓臺(tái)的性質(zhì)和軸截面整理計(jì)算即可求得最終結(jié)果.【詳解】畫出軸截面,如圖,過A作AM⊥BC于M,則BM=5-2=3(cm),AM==9(cm),所以S四邊形ABCD==63(cm2).【點(diǎn)睛】本題主要考查圓臺(tái)的空間結(jié)構(gòu)特征及相關(guān)元素的計(jì)算等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.16、【解析】
通過觀察的面積的式子很容易和余弦定理聯(lián)系起來,所以,求出,所以.再由正弦定理即可將的范圍通過輔助角公式化簡利用三角函數(shù)求出范圍即可.【詳解】因?yàn)榈拿娣e為,所以,所以.由余弦定理可得,則,即,所以.由正弦定理可得,所以.因?yàn)闉殇J角三角形,所以,所以,則,即.故的周長的取值范圍是.【點(diǎn)睛】此題考察解三角形,熟悉正余弦定理,然后一般求范圍的題目轉(zhuǎn)化為求解三角函數(shù)值域即可,易錯(cuò)點(diǎn)注意轉(zhuǎn)化后角的范圍區(qū)間,屬于中檔題目.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)利用條件求數(shù)列的首項(xiàng)與公比,確定所求.(2)將分組,,再利用等比數(shù)列前n項(xiàng)和公式求和【詳解】解:(1)設(shè)等比數(shù)列的公比為,所以,由,所以,則;(2),所以數(shù)列的前項(xiàng)和,則數(shù)列的前項(xiàng)和.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng),分組求和法,考查計(jì)算能力,屬于中檔題.18、(1);(2).【解析】分析:(1)因?yàn)榍€與坐標(biāo)軸的交點(diǎn)都在圓上,所以要求圓的方程應(yīng)求曲線與坐標(biāo)軸的三個(gè)交點(diǎn).曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為.由與軸的交點(diǎn)為關(guān)于點(diǎn)(3,0)對稱,故可設(shè)圓的圓心為,由兩點(diǎn)間距離公式可得,解得.進(jìn)而可求得圓的半徑為,然后可求圓的方程為.(2)設(shè),,由可得,進(jìn)而可得,減少變量個(gè)數(shù).因?yàn)?,,所以.要求值,故將直線與圓的方程聯(lián)立可得,消去,得方程.因?yàn)橹本€與圓有兩個(gè)交點(diǎn),故判別式,由根與系數(shù)的關(guān)系可得,.代入,化簡可求得,滿足,故.詳解:(1)曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為.故可設(shè)的圓心為,則有,解得.則圓的半徑為,所以圓的方程為.(2)設(shè),,其坐標(biāo)滿足方程組消去,得方程.由已知可得,判別式,且,.由于,可得.又,所以.由得,滿足,故.點(diǎn)睛:⑴求圓的方程一般有兩種方法:①待定系數(shù)法:如條件和圓心或半徑有關(guān),可設(shè)圓的方程為標(biāo)準(zhǔn)方程,再代入條件可求方程;如已知圓過兩點(diǎn)或三點(diǎn),可設(shè)圓的方程為一般方程,再根據(jù)條件求方程;②幾何方法:利用圓的性質(zhì),如圓的弦的垂直平分線經(jīng)過圓心,最長的弦為直徑,圓心到切線的距離等于半徑.(2)直線與圓或圓錐曲線交于,兩點(diǎn),若,應(yīng)設(shè),,可得.可將直線與圓或圓錐曲線的方程聯(lián)立消去,得關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系得兩根和與兩根積,代入,化簡求值.19、(1);(2).【解析】
(1)先將函數(shù)化簡整理,得到,根據(jù),得到,根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果;(2)令,得到或,根據(jù),,得出,,求出,根據(jù)正定理,即可得出結(jié)果.【詳解】(1)因?yàn)?,所以,因此;故函?shù)在區(qū)間上的最大值;(2)因?yàn)椋桑?),令,所以或,解得:或,因?yàn)?,所以,,因此,由正弦定理可得?【點(diǎn)睛】本題主要考查求正弦型復(fù)合函數(shù)在給定區(qū)間的最值,以及正弦定理的應(yīng)用,熟記正弦函數(shù)的性質(zhì),以及正弦定理即可,屬于??碱}型.20、(1);(2)【解析】
(1)根據(jù)同角三角函數(shù)平方關(guān)系即可求得結(jié)果;(2)利用同角三角函數(shù)商數(shù)關(guān)系可求得,代入兩角和差正切公式可求得結(jié)果.【詳解】(1)為第二象限角(2)由(1)知:【點(diǎn)睛】本題考查同角三角函數(shù)值的求解、兩角和差正切公式的應(yīng)用;易錯(cuò)點(diǎn)是忽略角所處的范圍,造成三角函數(shù)值符號(hào)求解錯(cuò)誤.21、(1);(2)【解析】
(1)在中利用余弦定理可求得,從而可知,求得;在中利用正弦定理求得結(jié)果;(2)在中利用余弦定理和可表示出;在中利用余
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 吉林省榆樹一中2026屆高三上英語期末復(fù)習(xí)檢測模擬試題含解析
- 文旅局安全生產(chǎn)研判制度
- 美麗話題活動(dòng)方案策劃(3篇)
- 西北工業(yè)大學(xué)附屬中學(xué)2026屆高二數(shù)學(xué)第一學(xué)期期末監(jiān)測試題含解析
- 供應(yīng)室消毒耗材管理制度(3篇)
- 化工企業(yè)獎(jiǎng)懲管理制度(3篇)
- 審計(jì)對發(fā)票的管理制度(3篇)
- 快手首播活動(dòng)策劃方案(3篇)
- 英語遼寧大連市2026年高三年級(jí)上學(xué)期雙基模擬考試(大連雙基)(1.15-1.16)
- 英語(原卷版)河北邢臺(tái)市名校協(xié)作體2026屆高三年級(jí)上學(xué)期模擬考試(一模)(1.14-1.15)
- DB11-T 1835-2021 給水排水管道工程施工技術(shù)規(guī)程
- 2025職業(yè)健康培訓(xùn)測試題(+答案)
- 供貨流程管控方案
- 章節(jié)復(fù)習(xí):平行四邊形(5個(gè)知識(shí)點(diǎn)+12大??碱}型)解析版-2024-2025學(xué)年八年級(jí)數(shù)學(xué)下冊(北師大版)
- 中試基地運(yùn)營管理制度
- 老年病康復(fù)訓(xùn)練治療講課件
- 2024中考會(huì)考模擬地理(福建)(含答案或解析)
- CJ/T 164-2014節(jié)水型生活用水器具
- 購銷合同范本(塘渣)8篇
- 貨車充電協(xié)議書范本
- 屋面光伏設(shè)計(jì)合同協(xié)議
評(píng)論
0/150
提交評(píng)論