版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了了解所加工的一批零件的長度,抽測了其中個零件的長度,在這個工作中,個零件的長度是()A.總體 B.個體 C.樣本容量 D.總體的一個樣本2.已知,向量,則向量()A. B. C. D.3.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.4.設(shè)公差為-2的等差數(shù)列,如果,那么等于()A.-182 B.-78 C.-148 D.-825.已知向量,且,則的值為()A.1 B.3 C.1或3 D.46.在△ABC中,,,.的值為()A. B. C. D.7.某校高二理(1)班學習興趣小組為了調(diào)查學生喜歡數(shù)學課的人數(shù)比例,設(shè)計了如下調(diào)查方法:(1)在本校中隨機抽取100名學生,并編號1,2,3,…,100;(2)在箱內(nèi)放置了兩個黃球和三個紅球,讓抽取到的100名學生分別從箱中隨機摸出一球,記住其顏色并放回;(3)請下列兩類學生站出來,一是摸到黃球且編號數(shù)為奇數(shù)的學生,二是摸到紅球且不喜歡數(shù)學課的學生。若共有32名學生站出來,那么請用統(tǒng)計的知識估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是()A.80% B.85% C.90% D.92%8.數(shù)列中,,則數(shù)列的極限值()A.等于0 B.等于1 C.等于0或1 D.不存在9.直線與直線平行,則實數(shù)a的值為()A. B. C. D.610.若,則函數(shù)的單調(diào)遞增區(qū)間為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知為鈍角,且,則__________.12.設(shè)數(shù)列的通項公式為,則_____.13.已知等差數(shù)列{an}的公差為d,且d≠0,其前n項和為Sn,若滿足a1,a2,a5成等比數(shù)列,且S3=9,則d=_____,Sn=_____.14.已知角的終邊上一點P落在直線上,則______.15.在中,角的對邊分別為.若,則的值為__________.16.已知sin=,則cos=________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列的遞推公式為.(1)求證:數(shù)列為等比數(shù)列;(2)求數(shù)列的通項公式.18.已知圓經(jīng)過兩點,且圓心在軸上.(1)求圓的方程;(2)若直線,且截軸所得縱截距為5,求直線截圓所得線段的長度.19.如圖,四邊形ABCD是平行四邊形,點E,F(xiàn),G分別為線段BC,PB,AD的中點.(1)證明:EF∥平面PAC;(2)證明:平面PCG∥平面AEF;(3)在線段BD上找一點H,使得FH∥平面PCG,并說明理由.20.如圖,在△ABC中,AB=8,AC=3,∠BAC=60°,以點A為圓心,r=2為半徑作一個圓,設(shè)PQ為圓A的一條直徑.(1)請用表示,用表示;(2)記∠BAP=θ,求的最大值.21.某科研小組對冬季晝夜溫差大小與某反季節(jié)作物種子發(fā)芽多少之間的關(guān)系進行分析,分別記錄了每天晝夜溫差和每100顆種子的發(fā)芽數(shù),其中5天的數(shù)據(jù)如下,該小組的研究方案是:先從這5組數(shù)據(jù)中選取3組求線性回歸方程,再用方程對其余的2組數(shù)據(jù)進行檢驗.日期第1天第2天第3天第4天第5天溫度(℃)101113128發(fā)芽數(shù)(顆)2326322616(1)求余下的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;(2)若選取的是第2、3、4天的數(shù)據(jù),求關(guān)于的線性回歸方程;(3)若由線性回歸方程得到的估計數(shù)據(jù)與2組檢驗數(shù)據(jù)的誤差均不超過1顆,則認為得到的線性回歸方程是可靠的,請問(2)中所得的線性回歸方程是否可靠?(參考公式;線性回歸方程中系數(shù)計算公式:,,其中、表示樣本的平均值)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據(jù)總體與樣本中的相關(guān)概念進行判斷.【詳解】由題意可知,在這個工作中,個零件的長度是總體的一個樣本,故選D.【點睛】本題考查總體與樣本中相關(guān)概念的理解,屬于基礎(chǔ)題.2、A【解析】
由向量減法法則計算.【詳解】.故選A.【點睛】本題考查向量的減法法則,屬于基礎(chǔ)題.3、B【解析】
利用角的關(guān)系,再利用兩角差的正切公式即可求出的值.【詳解】因為,且為銳角,則,所以,因為,所以故選B.【點睛】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關(guān)系,屬于中檔題.對于給值求值問題,關(guān)鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關(guān)系,用已知角表示未知角,從而將問題轉(zhuǎn)化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導公式即可求出.4、D【解析】
根據(jù)利用等差數(shù)列通項公式及性質(zhì)求得答案.【詳解】∵{an}是公差為﹣2的等差數(shù)列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故選D.【點睛】本題主要考查了等差數(shù)列的通項公式及性質(zhì)的應用,考查了運算能力,屬基礎(chǔ)題.5、B【解析】
先求出,再利用向量垂直的坐標表示得到關(guān)于的方程,從而求出.【詳解】因為,所以,因為,則,解得所以答案選B.【點睛】本題主要考查了平面向量的坐標運算,以及向量垂直的坐標表示,屬于基礎(chǔ)題.6、B【解析】
由正弦定理列方程求解?!驹斀狻坑烧叶ɡ砜傻茫?,所以,解得:.故選:B【點睛】本題主要考查了正弦定理,屬于基礎(chǔ)題。7、A【解析】
先分別計算號數(shù)為奇數(shù)的概率、摸到黃球的概率、摸到紅球的概率,從而可得摸到黃球且號數(shù)為奇數(shù)的學生,進而可得摸到紅球且不喜歡數(shù)學課的學生人數(shù),由此可得估計該校學生中喜歡數(shù)學課的人數(shù)比例.【詳解】解:由題意,號數(shù)為奇數(shù)的概率為0.5,摸到黃球的概率為,摸到紅球的概率為那么按概率計算摸到黃球且號數(shù)為奇數(shù)的學生有個共有32名學生站出來,則有12個摸到紅球且不喜歡數(shù)學課的學生,不喜歡數(shù)學課的學生有:,喜歡數(shù)學課的有80個,估計該校學生中喜歡數(shù)學課的人數(shù)比例大約是:.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.8、B【解析】
根據(jù)題意得到:時,,再計算即可.【詳解】因為當時,.所以.故選:B【點睛】本題主要考查數(shù)列的極限,解題時要注意公式的選取和應用,屬于中檔題.9、A【解析】
直接利用斜率相等列方程求解即可.【詳解】因為直線與直線平行,所以,故選:A.【點睛】本題主要考查兩直線平行的性質(zhì):斜率相等,屬于基礎(chǔ)題.10、B【解析】
由題意利用兩角和的余弦公式化簡函數(shù)的解析式,再利用余弦函數(shù)的單調(diào)性,得出結(jié)論.【詳解】函數(shù),令,求得,可得函數(shù)的增區(qū)間為,,.再根據(jù),,可得增區(qū)間為,,故選.【點睛】本題主要考查兩角和的余弦公式的應用,考查余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
利用同角三角函數(shù)的基本關(guān)系即可求解.【詳解】由為鈍角,且,所以,所以.故答案為:【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,同時考查了象限角的三角函數(shù)的符號,屬于基礎(chǔ)題.12、【解析】
根據(jù)數(shù)列的通項式求出前項和,再極限的思想即可解決此題?!驹斀狻繑?shù)列的通項公式為,則,則答案.故為:.【點睛】本題主要考查了給出數(shù)列的通項式求前項和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、列項相消等。本題主要利用了分組求和的方法。13、2n2.【解析】
由已知列關(guān)于首項與公差的方程組,求解可得首項與公差,再由等差數(shù)列的前項和求解.【詳解】由題意,有,即,解得,所以.故答案為:,.【點睛】本題考查等差數(shù)列的通項公式與前項和,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.14、【解析】
由于角的終邊上一點P落在直線上,可得,根據(jù)二倍角公式以及三角函數(shù)基本關(guān)系,可得,代入,可求得結(jié)果.【詳解】因為角的終邊上一點P落在直線上,所以,.故答案為:【點睛】本題考查同角三角函數(shù)的基本關(guān)系,巧用“1”是解決本題的關(guān)鍵.15、1009【解析】
利用余弦定理化簡所給等式,再利用正弦定理將邊化的關(guān)系為角的關(guān)系,變形化簡即可得出目標比值.【詳解】由得,即,所以,故.【點睛】本題綜合考查正余弦定理解三角形,屬于中檔題.16、【解析】
由sin=,得cos2=1-2sin2=,即cos=,所以cos=cos=,故答案為.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)直接利用數(shù)列的遞推關(guān)系式證明結(jié)論;(2)由(1)可求出數(shù)列的通項公式,進而得到的通項公式.【詳解】(1)∵數(shù)列{an}的首項a1=2,且,∴an+1+=3(an+),即∴是首項為,公比為3的等比數(shù)列;(2)由(1)可得a1+=,∴,∴數(shù)列的通項公式.【點睛】本題考查等比數(shù)列的證明考查了等比數(shù)列的通項公式,屬于中檔題.18、(1)(2)【解析】
(1)設(shè)圓心的坐標為,利用求出的值,可確定圓心坐標,并計算出半徑長,然后利用標準方程可寫出圓的方程;(2)由,得出直線的斜率與直線的斜率相等,可得出直線的斜率,再由截軸所得縱截距為,可得出直線的方程,計算圓心到直線的距離,則.【詳解】(1)設(shè)圓心,則,則所以圓方程:.(2)由于,且,則,則圓心到直線的距離為:.由于,【點睛】本題考查圓的方程的求解以及直線截圓所得弦長的計算,再解直線與圓相關(guān)的問題時,可充分利用圓的幾何性質(zhì),利用幾何法來處理,問題的核心在于計算圓心到直線的距離的計算,在計算弦長時,也可以利用弦長公式來計算。19、(1)見解析(2)見解析(3)見解析【解析】
(1)證明,EF∥平面PAC即得證;(2)證明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得證;(3)設(shè)AE,GC與BD分別交于M,N兩點,證明N點為所找的H點.【詳解】(1)證明:∵E、F分別是BC,BP中點,∴,∵PC?平面PAC,EF?平面PAC,∴EF∥平面PAC.(2)證明:∵E、G分別是BC、AD中點,∴AE∥CG,∵AE?平面PCG,CG?平面PCG,∴AE∥平面PCG,又∵EF∥PC,PC?平面PCG,EF?平面PCG,∴EF∥平面PCG,AE∩EF=E點,AE,EF?平面AEF,∴平面AEF∥平面PCG.(3)設(shè)AE,GC與BD分別交于M,N兩點,易知F,N分別是BP,BM中點,∴,∵PM?平面PGC,F(xiàn)N?平面PGC,∴FN∥平面PGC,即N點為所找的H點.【點睛】本題主要考查空間平行位置關(guān)系的證明,考查立體幾何的探究性問題的解決,意在考查學生對這些知識的理解掌握水平.20、(1);(2)22.【解析】
利用向量的三角形法則即可求得答案由,,可得,利用向量的數(shù)量積的坐標表示的表達式,利用三角函數(shù)知識可求最值【詳解】(1)=-.(2)∵∠BAC=60°,設(shè)∠BAP=θ,∴∠CAP=60°+θ,∵AB=8,AC=3,AP=2,∴=()·(-)=8-6cos(θ+60°)+16cosθ=3sinθ+13cosθ+8=14sin(θ+φ)+8,.∴當sin(θ+φ)=1時,的最大值為22.【點睛】本題主要考查了三角函數(shù)與平面向量的綜合,而輔助角公式是解決三角函數(shù)的最值的常用方法,體現(xiàn)了轉(zhuǎn)化的思想在解題中的應用.21、(1);(2);(3)線性回歸方程是可靠的.【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46822.1-2025電氣和電子設(shè)備用固定雙電層電容器第1部分:總規(guī)范
- 跨境電商方案服務合同協(xié)議
- 養(yǎng)老院入住老人法律權(quán)益保護制度
- 企業(yè)內(nèi)部審計與風險控制制度
- 公共交通信息化建設(shè)管理制度
- 2026年旅游規(guī)劃師專業(yè)考試題集與答案點撥
- 2026年教育科技項目創(chuàng)新與實施模擬題
- 2026年童模拍攝合同
- 古樹保護條例課件
- 檢查督查方式不合理處理意見建議
- GB/T 46878-2025二氧化碳捕集、運輸和地質(zhì)封存地質(zhì)封存
- 雷波縣糧油貿(mào)易總公司 2026年面向社會公開招聘備考考試試題及答案解析
- 2026年1月浙江省高考(首考)歷史試題(含答案)
- 療養(yǎng)院員工勞動保護制度
- 2026浙江溫州市蒼南縣城市投資集團有限公司招聘19人考試參考試題及答案解析
- 2026年廣州中考化學創(chuàng)新題型特訓試卷(附答案可下載)
- 2025司法鑒定人資格考試考點試題及答案
- 保健用品生產(chǎn)管理制度
- 檔案計件工資管理制度
- 浙江省杭州市拱墅區(qū)2024-2025學年八年級上學期語文期末試卷(含答案)
- DB11∕T 695-2025 建筑工程資料管理規(guī)程
評論
0/150
提交評論