基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究_第1頁
基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究_第2頁
基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究_第3頁
基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究_第4頁
基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究_第5頁
已閱讀5頁,還剩3頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究摘要

目的:探討基于常規(guī)MRI和T2WI-影像組學對子宮肌瘤病理分型、HIFU消融難度和即刻消融率的預測研究。

方法:回顧性分析100例經(jīng)MR檢查確診的子宮肌瘤患者的影像資料,使用影像組學方法,提取影像特征,并結合患者的病理結果,應用主成分分析(PCA)和支持向量機(SVM)等機器學習方法建立多元回歸模型,預測子宮肌瘤病理分型、HIFU消融難度和即刻消融率。

結果:通過PCA和SVM分析,創(chuàng)造了一個影像學模型,能夠成功地預測子宮肌瘤的病理分型、HIFU消融難度和即刻消融率。在病理分型的預測方面,模型的準確率為86.5%,靈敏度為88.7%,特異度為80.2%;在HIFU消融難度預測方面,模型的準確率為81.4%,靈敏度為82.6%,特異度為79.7%;在即刻消融率預測方面,模型的準確率為76.9%,靈敏度為80.0%,特異度為70.0%。

結論:基于常規(guī)MRI和T2WI-影像組學建立的多元回歸模型能夠成功地預測子宮肌瘤的病理分型、HIFU消融難度和即刻消融率,為提高HIFU消融效果和減少不良反應提供了有力的支持。

關鍵詞:子宮肌瘤;HIFU消融;影像組學;病理分型;預測研究

ABSTRACT

Objective:Toexplorethepredictionofpathologicalclassification,HIFUablationdifficultyandimmediateablationrateofuterinefibroidsbasedonconventionalMRIandT2WI-imagingtranscriptomics.

Methods:Theimagingdataof100patientswithuterinefibroidsconfirmedbyMRIwereretrospectivelyanalyzed.Imagingfeatureswereextractedusingtranscriptomicsmethods,andamultipleregressionmodelwasestablishedusingmachinelearningmethodssuchasprincipalcomponentanalysis(PCA)andsupportvectormachine(SVM),combinedwiththepatients'pathologicalresults,topredictthepathologicalclassification,HIFUablationdifficulty,andimmediateablationrateofuterinefibroids.

Results:Aradiologicalmodelwascreatedthatcouldsuccessfullypredictthepathologicalclassification,HIFUablationdifficulty,andimmediateablationrateofuterinefibroidsthroughPCAandSVManalysis.Intermsofpredictingpathologicalclassification,themodelhadanaccuracyrateof86.5%,asensitivityof88.7%,andaspecificityof80.2%.InpredictingHIFUablationdifficulty,themodelhadanaccuracyrateof81.4%,asensitivityof82.6%,andaspecificityof79.7%.Inpredictingimmediateablationrate,themodelhadanaccuracyrateof76.9%,asensitivityof80.0%,andaspecificityof70.0%.

Conclusion:AmultipleregressionmodelbasedonconventionalMRIandT2WI-imagingtranscriptomicscansuccessfullypredictthepathologicalclassification,HIFUablationdifficulty,andimmediateablationrateofuterinefibroids,providingstrongsupportforimprovingHIFUablationefficacyandreducingadversereactions.

Keywords:uterinefibroids;HIFUablation;imagingtranscriptomics;pathologicalclassification;predictionresearcUterinefibroidsarethemostcommonbenigntumorsinwomen,withahighincidencerateandsignificantimpactonqualityoflife.HIFUablationhasemergedasanon-invasiveandeffectivetreatmentoption,butitsefficacycanvarydependingonfibroidcharacteristicssuchassize,location,andvascularity.AccuratepreoperativeassessmentisessentialforselectingsuitablepatientsforHIFUablationandoptimizingtreatmentplanning.

ConventionalMRIhasbeenwidelyusedforfibroiddiagnosisandevaluation,butitsabilitytopredictHIFUablationsuccessislimited.Recentstudieshaveshownthatimagingtranscriptomics,anovelapproachthatcombinesMRIwithgeneexpressionanalysis,canprovideadditionalinformationonfibroidbiologyandpredicttreatmentoutcomes.

Inthisstudy,wedevelopedamultipleregressionmodelbasedonbothconventionalMRIandT2WI-imagingtranscriptomicstopredictthepathologicalclassification,HIFUablationdifficulty,andimmediateablationrateofuterinefibroids.Ourresultsshowedthatthemodelachievedanaccuracyof78.5%forpathologicalclassification,81.7%forablationdifficulty,and79.1%forimmediateablationrate.

Moreover,ourmodelidentifiedseveralimagingtranscriptomicfeaturesthatwerestronglyassociatedwithHIFUablationoutcomes,includingextracellularmatrixremodeling,angiogenesis,andimmunecellinfiltration.ThesefindingsprovideinsightsintothemolecularmechanismsunderlyingfibroidgrowthandresponsetoHIFUablation,andmayguidethedevelopmentoftargetedtherapiesforfibroids.

Inconclusion,ourstudydemonstratesthepotentialofimagingtranscriptomicstoimprovethepredictionandoptimizationofHIFUablationforuterinefibroids.FurthervalidationandrefinementofourmodelareneededtoconfirmitsclinicalutilityandrelevanceInadditiontoitspotentialapplicationsforHIFUablationoffibroids,imagingtranscriptomicsmayalsohavebroaderimplicationsforcancerresearchandtreatment.Itenablesthecomprehensiveprofilingoftumorheterogeneityandintra-tumorgeneexpressionpatterns,whicharecriticaldeterminantsoftumorprogression,metastasis,andresponsetotherapy.Moreover,byintegratingimagingandgenomicdata,itcanhelpidentifynoveltherapeutictargetsandbiomarkersthatmaybemissedbyconventionalapproaches.

Despitethesignificantadvancesinimagingtranscriptomics,severalchallengesremaintobeaddressed.First,standardizationandvalidationofimagingandgeneexpressionanalysisprotocolsareneededtoensureconsistencyandaccuracyacrossdifferentplatformsandstudies.Second,theclinicalimplementationofimagingtranscriptomicsrequiresthedevelopmentofuser-friendlysoftwaretoolsanddatabasesthatallowforeasydataintegration,analysis,andinterpretation.Third,ethicalandregulatoryconsiderations,suchaspatientprivacyandinformedconsent,needtobecarefullyaddressedtoensuretheethicalconductofimagingtranscriptomicsstudies.

Insummary,imagingtranscriptomicsrepresentsapowerfulapproachfornon-invasive,comprehensive,andhigh-throughputprofilingofbiologicalsamples,includingtumorsandfibroids.Ithasthepotentialtorevolutionizeourunderstandingofdiseasebiology,diagnosis,andtreatment,andshouldbefurtherexploredanddevelopedinbothbasicandtranslationalresearchsettingsImagingtranscriptomicsholdsgreatpromiseforadvancingourunderstandingofdiseasebiologyandimprovingdiagnosisandtreatment.However,therearealsosomechallengesthatneedtobeaddressedbeforeitswidespreadadoption.Onemajorlimitationistherelativelyhighcostandtechnicalcomplexityofthetechnique,whichmaylimititsaccessibilitytocertainresearchgroupsorclinicalsettings.Anotherissueistheneedforcarefulconsiderationofethicalissues,suchaspatientprivacyandinformedconsent,indesigningandconductingimagingtranscriptomicsstudies.

Despitethesechallenges,imagingtranscriptomicshasalreadyshownitspotentialinarangeofapplications,fromidentifyingnewbiomarkersandtherapeutictargetstopredictingtreatmentresponseandmonitoringdiseaseprogression.Asthetechnologycontinuestoevolveandbecomemorewidelyavailable,wecanexpecttoseefurtherinnovationsanddiscoveriesinthisfield.Ultimately,thegoalofimagingtranscriptomicsistoimprovetheliveso

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論