廣西防城港市2023屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
廣西防城港市2023屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
廣西防城港市2023屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
廣西防城港市2023屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
廣西防城港市2023屆高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在平行四邊形中,若則()A. B. C. D.2.已知,則()A.2 B. C. D.33.已知函數(shù)在區(qū)間有三個(gè)零點(diǎn),,,且,若,則的最小正周期為()A. B. C. D.4.已知向量,夾角為,,,則()A.2 B.4 C. D.5.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)6.若復(fù)數(shù)滿足(為虛數(shù)單位),則其共軛復(fù)數(shù)的虛部為()A. B. C. D.7.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請公仔細(xì)算相還.”其意思為:“有一個(gè)人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個(gè)描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣129.記為等差數(shù)列的前項(xiàng)和.若,,則()A.5 B.3 C.-12 D.-1310.已知是邊長為的正三角形,若,則A. B.C. D.11.在直角坐標(biāo)平面上,點(diǎn)的坐標(biāo)滿足方程,點(diǎn)的坐標(biāo)滿足方程則的取值范圍是()A. B. C. D.12.已知非零向量,滿足,,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點(diǎn)為,直線與拋物線相切于點(diǎn),是上一點(diǎn)(不與重合),若以線段為直徑的圓恰好經(jīng)過,則點(diǎn)到拋物線頂點(diǎn)的距離的最小值是__________.14.在四棱錐中,是邊長為的正三角形,為矩形,,.若四棱錐的頂點(diǎn)均在球的球面上,則球的表面積為_____.15.已知點(diǎn)是拋物線的準(zhǔn)線上一點(diǎn),F(xiàn)為拋物線的焦點(diǎn),P為拋物線上的點(diǎn),且,若雙曲線C中心在原點(diǎn),F(xiàn)是它的一個(gè)焦點(diǎn),且過P點(diǎn),當(dāng)m取最小值時(shí),雙曲線C的離心率為______.16.從4名男生和3名女生中選出4名去參加一項(xiàng)活動,要求男生中的甲和乙不能同時(shí)參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.(1)證明:平面;(2)若,求二面角的余弦值.18.(12分)隨著改革開放的不斷深入,祖國不斷富強(qiáng),人民的生活水平逐步提高,為了進(jìn)一步改善民生,2019年1月1日起我國實(shí)施了個(gè)人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個(gè)稅起征點(diǎn)為5000元;(2)每月應(yīng)納稅所得額(含稅)收入個(gè)稅起征點(diǎn)專項(xiàng)附加扣除;(3)專項(xiàng)附加扣除包括①贍養(yǎng)老人費(fèi)用②子女教育費(fèi)用③繼續(xù)教育費(fèi)用④大病醫(yī)療費(fèi)用等.其中前兩項(xiàng)的扣除標(biāo)準(zhǔn)為:①贍養(yǎng)老人費(fèi)用:每月扣除2000元②子女教育費(fèi)用:每個(gè)子女每月扣除1000元.新個(gè)稅政策的稅率表部分內(nèi)容如下:級數(shù)一級二級三級四級每月應(yīng)納稅所得額(含稅)不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分超過25000元至35000元的部分稅率3102025(1)現(xiàn)有李某月收入29600元,膝下有一名子女,需要贍養(yǎng)老人,除此之外,無其它專項(xiàng)附加扣除.請問李某月應(yīng)繳納的個(gè)稅金額為多少?(2)為研究月薪為20000元的群體的納稅情況,現(xiàn)收集了某城市500名的公司白領(lǐng)的相關(guān)資料,通過整理資料可知,有一個(gè)孩子的有400人,沒有孩子的有100人,有一個(gè)孩子的人中有300人需要贍養(yǎng)老人,沒有孩子的人中有50人需要贍養(yǎng)老人,并且他們均不符合其它專項(xiàng)附加扣除(受統(tǒng)計(jì)的500人中,任何兩人均不在一個(gè)家庭).若他們的月收入均為20000元,依據(jù)樣本估計(jì)總體的思想,試估計(jì)在新個(gè)稅政策下這類人群繳納個(gè)稅金額的分布列與期望.19.(12分)如圖,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長,若不存在說明理由.20.(12分)某生物硏究小組準(zhǔn)備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據(jù)統(tǒng)計(jì)該地區(qū)蜻蜓有兩種,且這兩種的個(gè)體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機(jī)變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機(jī)捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機(jī)變量,若用正態(tài)分布來近似描述的分布,請你根據(jù)(Ⅰ)中的結(jié)果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機(jī)捕捉3只,記這3只中翼長在區(qū)間的個(gè)數(shù)為,求的分布列及數(shù)學(xué)期望(分布列寫出計(jì)算表達(dá)式即可).注:若,則,,.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若存在實(shí)數(shù),使得不等式成立,求實(shí)數(shù)的取值范圍.22.(10分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點(diǎn),底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

由,,利用平面向量的數(shù)量積運(yùn)算,先求得利用平行四邊形的性質(zhì)可得結(jié)果.【詳解】如圖所示,

平行四邊形中,,

,,,

因?yàn)?

所以

,

,所以,故選C.【點(diǎn)睛】本題主要考查向量的幾何運(yùn)算以及平面向量數(shù)量積的運(yùn)算法則,屬于中檔題.向量的運(yùn)算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).2、A【解析】

利用分段函數(shù)的性質(zhì)逐步求解即可得答案.【詳解】,;;故選:.【點(diǎn)睛】本題考查了函數(shù)值的求法,考查對數(shù)的運(yùn)算和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時(shí)注意函數(shù)性質(zhì)的合理應(yīng)用.3、C【解析】

根據(jù)題意,知當(dāng)時(shí),,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個(gè)零點(diǎn),,,當(dāng)時(shí),,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計(jì)算能力.4、A【解析】

根據(jù)模長計(jì)算公式和數(shù)量積運(yùn)算,即可容易求得結(jié)果.【詳解】由于,故選:A.【點(diǎn)睛】本題考查向量的數(shù)量積運(yùn)算,模長的求解,屬綜合基礎(chǔ)題.5、B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.6、D【解析】

由已知等式求出z,再由共軛復(fù)數(shù)的概念求得,即可得虛部.【詳解】由zi=1﹣i,∴z=,所以共軛復(fù)數(shù)=-1+,虛部為1故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算和共軛復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.7、C【解析】

設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的某一項(xiàng)的求法,考查等比數(shù)列等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.8、D【解析】

分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。9、B【解析】

由題得,,解得,,計(jì)算可得.【詳解】,,,,解得,,.故選:B【點(diǎn)睛】本題主要考查了等差數(shù)列的通項(xiàng)公式,前項(xiàng)和公式,考查了學(xué)生運(yùn)算求解能力.10、A【解析】

由可得,因?yàn)槭沁呴L為的正三角形,所以,故選A.11、B【解析】

由點(diǎn)的坐標(biāo)滿足方程,可得在圓上,由坐標(biāo)滿足方程,可得在圓上,則求出兩圓內(nèi)公切線的斜率,利用數(shù)形結(jié)合可得結(jié)果.【詳解】點(diǎn)的坐標(biāo)滿足方程,在圓上,在坐標(biāo)滿足方程,在圓上,則作出兩圓的圖象如圖,設(shè)兩圓內(nèi)公切線為與,由圖可知,設(shè)兩圓內(nèi)公切線方程為,則,圓心在內(nèi)公切線兩側(cè),,可得,,化為,,即,,的取值范圍,故選B.【點(diǎn)睛】本題主要考查直線的斜率、直線與圓的位置關(guān)系以及數(shù)形結(jié)合思想的應(yīng)用,屬于綜合題.數(shù)形結(jié)合是根據(jù)數(shù)量與圖形之間的對應(yīng)關(guān)系,通過數(shù)與形的相互轉(zhuǎn)化來解決數(shù)學(xué)問題的一種重要思想方法,尤其在解決選擇題、填空題時(shí)發(fā)揮著奇特功效,大大提高了解題能力與速度.運(yùn)用這種方法的關(guān)鍵是運(yùn)用這種方法的關(guān)鍵是正確作出曲線圖象,充分利用數(shù)形結(jié)合的思想方法能夠使問題化難為簡,并迎刃而解.12、B【解析】

由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)拋物線,不妨設(shè),取,通過求導(dǎo)得,,再根據(jù)以線段為直徑的圓恰好經(jīng)過,則,得到,兩式聯(lián)立,求得點(diǎn)N的軌跡,再求解最值.【詳解】因?yàn)閽佄锞€,不妨設(shè),取,所以,即,所以,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過,所以,所以,所以,由,解得,所以點(diǎn)在直線上,所以當(dāng)時(shí),最小,最小值為.故答案為:2【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系直線的交軌問題,還考查了運(yùn)算求解的能力,屬于中檔題.14、【解析】

做中點(diǎn),的中點(diǎn),連接,由已知條件可求出,運(yùn)用余弦定理可求,從而在平面中建立坐標(biāo)系,則以及的外接圓圓心為和長方形的外接圓圓心為在該平面坐標(biāo)系的坐標(biāo)可求,通過球心滿足,即可求出的坐標(biāo),從而可求球的半徑,進(jìn)而能求出球的表面積.【詳解】解:如圖做中點(diǎn),的中點(diǎn),連接,由題意知,則設(shè)的外接圓圓心為,則在直線上且設(shè)長方形的外接圓圓心為,則在上且.設(shè)外接球的球心為在中,由余弦定理可知,.在平面中,以為坐標(biāo)原點(diǎn),以所在直線為軸,以過點(diǎn)垂直于軸的直線為軸,如圖建立坐標(biāo)系,由題意知,在平面中且設(shè),則,因?yàn)?,所以解?則所以球的表面積為.故答案為:.【點(diǎn)睛】本題考查了幾何體外接球的問題,考查了球的表面積.關(guān)于幾何體的外接球的做題思路有:一是通過將幾何體補(bǔ)充到長方體中,將幾何體的外接球等同于長方體的外接球,求出體對角線即為直徑,但這種方法適用性較差;二是通過球的球心與各面外接圓圓心的連線與該平面垂直,設(shè)半徑列方程求解;三是通過空間、平面坐標(biāo)系進(jìn)行求解.15、【解析】

由點(diǎn)坐標(biāo)可確定拋物線方程,由此得到坐標(biāo)和準(zhǔn)線方程;過作準(zhǔn)線的垂線,垂足為,根據(jù)拋物線定義可得,可知當(dāng)直線與拋物線相切時(shí),取得最小值;利用拋物線切線的求解方法可求得點(diǎn)坐標(biāo),根據(jù)雙曲線定義得到實(shí)軸長,結(jié)合焦距可求得所求的離心率.【詳解】是拋物線準(zhǔn)線上的一點(diǎn)拋物線方程為,準(zhǔn)線方程為過作準(zhǔn)線的垂線,垂足為,則設(shè)直線的傾斜角為,則當(dāng)取得最小值時(shí),最小,此時(shí)直線與拋物線相切設(shè)直線的方程為,代入得:,解得:或雙曲線的實(shí)軸長為,焦距為雙曲線的離心率故答案為:【點(diǎn)睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標(biāo)準(zhǔn)方程的應(yīng)用、雙曲線定義的應(yīng)用;關(guān)鍵是能夠確定當(dāng)取得最小值時(shí),直線與拋物線相切,進(jìn)而根據(jù)拋物線切線方程的求解方法求得點(diǎn)坐標(biāo).16、1【解析】

由排列組合及分類討論思想分別討論:①設(shè)甲參加,乙不參加,②設(shè)乙參加,甲不參加,③設(shè)甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【詳解】①設(shè)甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設(shè)乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設(shè)甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【點(diǎn)睛】本題考查了排列組合及分類討論思想,準(zhǔn)確分類及計(jì)算是關(guān)鍵,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)連結(jié)BM,推導(dǎo)出BC⊥BB1,AA1⊥BC,從而AA1⊥MC,進(jìn)而AA1⊥平面BCM,AA1⊥MB,推導(dǎo)出四邊形AMNP是平行四邊形,從而MN∥AP,由此能證明MN∥平面ABC.(2)推導(dǎo)出△ABA1是等腰直角三角形,設(shè)AB,則AA1=2a,BM=AM=a,推導(dǎo)出MC⊥BM,MC⊥AA1,BM⊥AA1,以M為坐標(biāo)原點(diǎn),MA1,MB,MC為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A﹣CM﹣N的余弦值.【詳解】(1)如圖1,在三棱柱中,連結(jié),因?yàn)槭蔷匦?,所以,因?yàn)?,所以,又因?yàn)?,,所以平面,所以,又因?yàn)?,所以是中點(diǎn),取中點(diǎn),連結(jié),,因?yàn)槭堑闹悬c(diǎn),則且,所以且,所以四邊形是平行四邊形,所以,又因?yàn)槠矫?,平面,所以平?(圖1)(圖2)(2)因?yàn)?,所以是等腰直角三角形,設(shè),則,.在中,,所以.在中,,所以,由(1)知,則,,如圖2,以為坐標(biāo)原點(diǎn),,,的方向分別為軸,軸,軸的正方向建立空間直角坐標(biāo)系,則,,.所以,則,,設(shè)平面的法向量為,則即取得.故平面的一個(gè)法向量為,因?yàn)槠矫娴囊粋€(gè)法向量為,則.因?yàn)槎娼菫殁g角,所以二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查了利用空間向量法求解二面角的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.18、(1)李某月應(yīng)繳納的個(gè)稅金額為元,(2)分布列詳見解析,期望為1150元【解析】

(1)分段計(jì)算個(gè)人所得稅額;

(2)隨機(jī)變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應(yīng)的概率,列出分布列,求期望即可.【詳解】解:(1)李某月應(yīng)納稅所得額(含稅)為:29600?5000?1000?2000=21600元

不超過3000的部分稅額為3000×3%=90元

超過3000元至12000元的部分稅額為9000×10%=900元,

超過12000元至25000元的部分稅額為9600×20%=1920元

所以李某月應(yīng)繳納的個(gè)稅金額為90+900+1920=2910元,

(2)有一個(gè)孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:20000?5000?1000?2000=12000元,

月應(yīng)繳納的個(gè)稅金額為:90+900=990元

有一個(gè)孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:20000?5000?1000=14000元,

月應(yīng)繳納的個(gè)稅金額為:90+900+400=1390元;

沒有孩子需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:20000?5000?2000=13000元,

月應(yīng)繳納的個(gè)稅金額為:90+900+200=1190元;

沒有孩子不需要贍養(yǎng)老人應(yīng)納稅所得額(含稅)為:20000?5000=15000元,

月應(yīng)繳納的個(gè)稅金額為:90+900+600=1590元;

所以隨機(jī)變量X的分布列為:990119013901590.【點(diǎn)睛】本題考查了分段函數(shù)的應(yīng)用與函數(shù)值計(jì)算,考查了隨機(jī)變量的概率分布列與數(shù)學(xué)期望,屬于中檔題.19、(Ⅰ)證明見解析;(Ⅱ);(Ⅲ)線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【解析】

(Ⅰ)取中點(diǎn),連結(jié)、,推導(dǎo)出四邊形是平行四邊形,從而,由此能證明平面;(Ⅱ)取中點(diǎn),連結(jié),,推導(dǎo)出平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值;(Ⅲ)假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).利用向量法能求出結(jié)果.【詳解】(Ⅰ)證明:取中點(diǎn),連結(jié)、,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),,四邊形是平行四邊形,,平面,平面,平面.(Ⅱ)解:取中點(diǎn),連結(jié),,在四棱柱中,平面平面,是邊長為2的等邊三角形,,,,點(diǎn)為的中點(diǎn),平面,,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,,1,,,0,,,1,,,0,,,,,,0,,,,,設(shè)平面的法向量,,,則,取,得,,,設(shè)平面的法向量,,,則,取,得,設(shè)二面角的平面角為,則.二面角的余弦值為.(Ⅲ)解:假設(shè)在線段上是存在一點(diǎn),使直線與平面所成的角正弦值為,設(shè).則,,,,,,平面的法向量,,解得,線段上是存在一點(diǎn),,使直線與平面所成的角正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查滿足正弦值的點(diǎn)是否存在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.20、(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解析】

(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運(yùn)算即可;(Ⅱ)可判斷均值應(yīng)為,再結(jié)合(1)和題干備注信息可得,進(jìn)而求解;(Ⅲ)求得,該分布符合二項(xiàng)分布,故,列出分布列,計(jì)算出對應(yīng)概率,結(jié)合即可求解;【詳解】(Ⅰ)記這只蜻蜓的翼長為.因?yàn)榉N蜻蜓和種

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論