版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
21.1一元二次方程易錯點:a≠0和a=0方程兩個根的取舍知識點一一元二次方程的定義:等號兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程。注意一下幾點:只含有一個未知數(shù);②未知數(shù)的最高次數(shù)是2;③是整式方程。知識點二一元二次方程的一般形式:一般形式:ax2+bx+c=0(a≠0).其中,ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項。知識點三一元二次方程的根:使一元二次方程左右兩邊相等的未知數(shù)的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定義是解方程過程中驗根的依據(jù)。21.2降次——解一元二次方程21.2.1配方法知識點一直接開平方法解一元二次方程如果方程的一邊可以化成含未知數(shù)的代數(shù)式的平方,另一邊是非負數(shù),可以直接開平方。一般地,對于形如x2=a(a≥0)的方程,根據(jù)平方根的定義可解得x1=,x2=.直接開平方法適用于解形如x2=p或(mx+a)2=p(m≠0)形式的方程,如果p≥0,就可以利用直接開平方法。用直接開平方法求一元二次方程的根,要正確運用平方根的性質(zhì),即正數(shù)的平方根有兩個,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。直接開平方法解一元二次方程的步驟是:①移項;②使二次項系數(shù)或含有未知數(shù)的式子的平方項的系數(shù)為1;③兩邊直接開平方,使原方程變?yōu)閮蓚€一元二次方程;④解一元一次方程,求出原方程的根。知識點二配方法解一元二次方程通過配成完全平方形式來解一元二次方程的方法,叫做配方法,配方的目的是降次,把一個一元二次方程轉(zhuǎn)化為兩個一元一次方程來解。配方法的一般步驟可以總結(jié)為:一移、二除、三配、四開。把常數(shù)項移到等號的右邊;方程兩邊都除以二次項系數(shù);方程兩邊都加上一次項系數(shù)一半的平方,把左邊配成完全平方式;⑷若等號右邊為非負數(shù),直接開平方求出方程的解。21.2.2公式法知識點一公式法解一元二次方程一般地,對于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的兩個根為x=,這個公式叫做一元二次方程的求根公式,利用求根公式,我們可以由一元二方程的系數(shù)a,b,c的值直接求得方程的解,這種解方程的方法叫做公式法。一元二次方程求根公式的推導(dǎo)過程,就是用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0)的過程。公式法解一元二次方程的具體步驟:方程化為一般形式:ax2+bx+c=0(a≠0),一般a化為正值確定公式中a,b,c的值,注意符號;求出b2-4ac的值;④若b2-4ac≥0,則把a,b,c和b-4ac的值代入公式即可求解,若b2-4ac<0,則方程無實數(shù)根(有虛數(shù)根--高中學(xué))。知識點二一元二次方程根的判別式式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判別式,通常用希臘字母△表示它,即△=b2-4ac.△>0,方程ax2+bx+c=0(a≠0)有兩個不相等的實數(shù)根根的判別式根的判別式△=0,方程ax2+bx+c=0(a≠0)有兩個相等的實數(shù)根△<0,方程ax2+bx+c=0(a≠0)無實數(shù)根21.2.3因式分解法知識點一因式分解法解一元二次方程把一元二次方程的一邊化為0,而另一邊分解成兩個一次因式的積,進而轉(zhuǎn)化為求兩個求一元一次方程的解,這種解方程的方法叫做因式分解法。因式分解法的詳細步驟:移項,將所有的項都移到左邊,右邊化為0;把方程的左邊分解成兩個因式的積,可用的方法有提公因式、平方差公式和完全平方公式;令每一個因式分別為零,得到一元一次方程;解一元一次方程即可得到原方程的解。知識點二用合適的方法解一元一次方程方法名稱理論依據(jù)適用范圍直接開平方法平方根的意義形如x2=p或(mx+n)2=p(p≥0)配方法完全平方公式所有一元二次方程公式法配方法所有一元二次方程因式分解法當(dāng)ab=0,則a=0或b=0一邊為0,另一邊易于分解成兩個一次因式的積的一元二次方程。21.2.4一元二次方程的根與系數(shù)的關(guān)系若一元二次方程x2+px+q=0的兩個根為x1,x2,則有x1+x2=-p,x1x2=q.若一元二次方程a2x+bx+c=0(a≠0)有兩個實數(shù)根x1,x2,則有x1+x2=,,x1x2=21.3實際問題與一元二次方程知識點一列一元二次方程解應(yīng)用題的一般步驟:審:是指讀懂題目,弄清題意,明確哪些是已知量,哪些是未知量以及它們之間的等量關(guān)系。設(shè):是指設(shè)元,也就是設(shè)出未知數(shù)。列:就是列方程,這是關(guān)鍵步驟,一般先找出能夠表達應(yīng)用題全部含義的一個相等含義,然后列代數(shù)式表示這個相等關(guān)系中的各個量,就得到含有未知數(shù)的等式,即方程。解:就是解方程,求出未知數(shù)的值。驗:是指檢驗方程的解是否保證實際問題有意義,符合題意。答:寫出答案。知識點二列一元二次方程解應(yīng)用題的幾種常見類型數(shù)字問題三個連續(xù)整數(shù):若設(shè)中間的一個數(shù)為x,則另兩個數(shù)分別為x-1,x+1。三個連續(xù)偶數(shù)(奇數(shù)):若中間的一個數(shù)為x,則另兩個數(shù)分別為x-2,x+2。三位數(shù)的表示方法:設(shè)百位、十位、個位上的數(shù)字分別為a,b,c,則這個三位數(shù)是100a+10b+c.增長率問題設(shè)初始量為a,終止量為b,平均增長率或平均降低率為x,則經(jīng)過兩次的增長或降低后的等量關(guān)系為a(1)2=b。(3)利潤問題利潤問題常用的相等關(guān)系式有:①總利潤=總銷售價-總成本;②總利潤=單位利潤×總銷售量;③利潤=成本×利潤率(4)圖形的面積問題根據(jù)圖形的面積與圖形的邊、高等相關(guān)元素的關(guān)系,將圖形的面積用含有未知數(shù)的代數(shù)式表示出來,建立一元二次方程。22.二次函數(shù)知識點歸納一、相關(guān)概念及定義1二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).二次函數(shù)的結(jié)構(gòu)特征:(1)等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.(2)是常數(shù),是二次項系數(shù),是一次項系數(shù),是常數(shù)項.二、二次函數(shù)各種形式之間的變換1二次函數(shù)用配方法可化成:的形式,其中.2二次函數(shù)由特殊到一般,可分為以下幾種形式:①;②;③;④;⑤.三、二次函數(shù)解析式的表示方法一般式:(,,為常數(shù),);頂點式:(,,為常數(shù),);兩根式:(,,是拋物線與軸兩交點的橫坐標).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點式,但并非所有的二次函數(shù)都可以寫成交點式,只有拋物線與軸有交點,即時,拋物線的解析式才可以用交點式表示.二次函數(shù)解析式的這三種形式可以互化.四、二次函數(shù)圖象的畫法1五點繪圖法:利用配方法將二次函數(shù)化為頂點式,確定其開口方向、對稱軸及頂點坐標,然后在對稱軸兩側(cè),左右對稱地描點畫圖.一般我們選取的五點為:頂點、與軸的交點、以及關(guān)于對稱軸對稱的點、與軸的交點,(若與軸沒有交點,則取兩組關(guān)于對稱軸對稱的點).2畫草圖時應(yīng)抓住以下幾點:開口方向,對稱軸,頂點,與軸的交點,與軸的交點.二次函數(shù)的性質(zhì)的符號開口方向頂點坐標對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值.六、二次函數(shù)的性質(zhì)的符號開口方向頂點坐標對稱軸性質(zhì)向上軸時,隨的增大而增大;時,隨的增大而減??;時,有最小值.向下軸時,隨的增大而減小;時,隨的增大而增大;時,有最大值.七、二次函數(shù)的性質(zhì):的符號開口方向頂點坐標對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減小;時,有最小值.向下X=h時,隨的增大而減小;時,隨的增大而增大;時,有最大值.八、二次函數(shù)的性質(zhì)的符號開口方向頂點坐標對稱軸性質(zhì)向上X=h時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下X=h時,隨的增大而減?。粫r,隨的增大而增大;時,有最大值.九、拋物線的三要素:開口方向、對稱軸、頂點.1的符號決定拋物線的開口方向:當(dāng)時,開口向上;當(dāng)時,開口向下;相等,拋物線的開口大小、形狀相同.2對稱軸:平行于軸(或重合)的直線記作.特別地,軸記作直線.3頂點坐標:4頂點決定拋物線的位置.幾個不同的二次函數(shù),如果二次項系數(shù)相同,那么拋物線的開口方向、開口大小完全相同,只是頂點的位置不同.十、拋物線中,與函數(shù)圖像的關(guān)系1二次項系數(shù)二次函數(shù)中,作為二次項系數(shù),顯然.⑴當(dāng)時,拋物線開口向上,越大,開口越小,反之的值越小,開口越大;⑵當(dāng)時,拋物線開口向下,越小,開口越小,反之的值越大,開口越大.總結(jié)起來,決定了拋物線開口的大小和方向,的正負決定開口方向,的大小決定開口的大?。?一次項系數(shù)在二次項系數(shù)確定的前提下,決定了拋物線的對稱軸.⑴在的前提下,當(dāng)時,,即拋物線的對稱軸在軸左側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的右側(cè).⑵在的前提下,結(jié)論剛好與上述相反,即當(dāng)時,,即拋物線的對稱軸在軸右側(cè);當(dāng)時,,即拋物線的對稱軸就是軸;當(dāng)時,,即拋物線對稱軸在軸的左側(cè).總結(jié)起來,在確定的前提下,決定了拋物線對稱軸的位置.總結(jié):3常數(shù)項⑴當(dāng)時,拋物線與軸的交點在軸上方,即拋物線與軸交點的縱坐標為正;⑵當(dāng)時,拋物線與軸的交點為坐標原點,即拋物線與軸交點的縱坐標為;⑶當(dāng)時,拋物線與軸的交點在軸下方,即拋物線與軸交點的縱坐標為負.總結(jié)起來,決定了拋物線與軸交點的位置.總之,只要都確定,那么這條拋物線就是唯一確定的.十一、求拋物線的頂點、對稱軸的方法1公式法:,∴頂點是,對稱軸是直線.2配方法:運用配方的方法,將拋物線的解析式化為的形式,得到頂點為(,),對稱軸是直線.3運用拋物線的對稱性:由于拋物線是以對稱軸為軸的軸對稱圖形,所以對稱軸的連線的垂直平分線是拋物線的對稱軸,對稱軸與拋物線的交點是頂點.用配方法求得的頂點,再用公式法或?qū)ΨQ性進行驗證,才能做到萬無一失.十二、用待定系數(shù)法求二次函數(shù)的解析式1一般式:.已知圖像上三點或三對、的值,通常選擇一般式.2頂點式:.已知圖像的頂點或?qū)ΨQ軸,通常選擇頂點式.3交點式:已知圖像與軸的交點坐標、,通常選用交點式:.十三、直線與拋物線的交點1軸與拋物線得交點為(0,).2與軸平行的直線與拋物線有且只有一個交點(,).3拋物線與軸的交點:二次函數(shù)的圖像與軸的兩個交點的橫坐標、,是對應(yīng)一元二次方程的兩個實數(shù)根.拋物線與軸的交點情況可以由對應(yīng)的一元二次方程的根的判別式判定:①有兩個交點拋物線與軸相交;②有一個交點(頂點在軸上)拋物線與軸相切;③沒有交點拋物線與軸相離.4平行于軸的直線與拋物線的交點可能有0個交點、1個交點、2個交點.當(dāng)有2個交點時,兩交點的縱坐標相等,設(shè)縱坐標為,則橫坐標是的兩個實數(shù)根.5一次函數(shù)的圖像與二次函數(shù)的圖像的交點,由方程組的解的數(shù)目來確定:①方程組有兩組不同的解時與有兩個交點;②方程組只有一組解時與只有一個交點;③方程組無解時與沒有交點.6拋物線與軸兩交點之間的距離:若拋物線與軸兩交點為,由于、是方程的兩個根,故十四、二次函數(shù)圖象的對稱:二次函數(shù)圖象的對稱一般有五種情況,可以用一般式或頂點式表達1關(guān)于軸對稱關(guān)于軸對稱后,得到的解析式是;關(guān)于軸對稱后,得到的解析式是;2關(guān)于軸對稱關(guān)于軸對稱后,得到的解析式是;關(guān)于軸對稱后,得到的解析式是;3關(guān)于原點對稱關(guān)于原點對稱后,得到的解析式是;關(guān)于原點對稱后,得到的解析式是;4關(guān)于頂點對稱關(guān)于頂點對稱后,得到的解析式是;關(guān)于頂點對稱后,得到的解析式是.5關(guān)于點對稱關(guān)于點對稱后,得到的解析式是總結(jié):根據(jù)對稱的性質(zhì),顯然無論作何種對稱變換,拋物線的形狀一定不會發(fā)生變化,因此永遠不變.求拋物線的對稱拋物線的表達式時,可以依據(jù)題意或方便運算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達式已知的拋物線)的頂點坐標及開口方向,再確定其對稱拋物線的頂點坐標及開口方向,然后再寫出其對稱拋物線的表達式.十五、二次函數(shù)圖象的平移1.平移步驟:⑴將拋物線解析式轉(zhuǎn)化成頂點式,確定其頂點坐標;⑵保持拋物線的形狀不變,將其頂點平移到處,具體平移方法如下:2平移規(guī)律在原有函數(shù)的基礎(chǔ)上“值正右移,負左移;值正上移,負下移”.概括成八個字“左加右減,上加下減”.十六、根據(jù)條件確定二次函數(shù)表達式的幾種基本思路。1.三點式。(1)已知拋物線y=ax=2\*Arabic2+bx+c經(jīng)過A(,0),B(,0),C(0,-3)三點,求拋物線的解析式。(2)已知拋物線y=a(x-1)2+4,經(jīng)過點A(2,3),求拋物線的解析式。2.頂點式。(1)已知拋物線y=x2-2ax+a2+b頂點為A(2,1),求拋物線的解析式。(1)已知拋物線y=4(x+a)2-2a的頂點為(3,1),求拋物線的解析式。3.交點式。(1)已知拋物線與x軸兩個交點分別為(3,0),(5,0),求拋物線y=(x-a)(x-b)的解析式。(2)已知拋物線線與x軸兩個交點(4,0),(1,0)求拋物線y=a(x-2a)(x-b)的解析式。4.定點式。(1)在直角坐標系中,不論a取何值,拋物線經(jīng)過x軸上一定點Q,直線經(jīng)過點Q,求拋物線的解析式。(2)拋物線y=x2+(2m-1)x-2m與x軸的一定交點經(jīng)過直線y=mx+m+4,求拋物線的解析式。拋物線y=ax2+ax-2過直線y=mx-2m+2上的定點A,求拋物線的解析式。5.平移式。(1)把拋物線y=-2x2向左平移2個單位長度,再向下平移1個單位長度,得到拋物線y=a(x-h)2+k,求此拋物線解析式。(2)拋物線向上平移,使拋物線經(jīng)過點C(0,2),求拋物線的解析式.6.距離式。(1)拋物線y=ax2+4ax+1(a﹥0)與x軸的兩個交點間的距離為2,求拋物線的解析式。(2)已知拋物線y=mx2+3mx-4m(m﹥0)與x軸交于A、B兩點,與軸交于C點,且AB=BC,求此拋物線的解析式。7.對稱軸式。(1)拋物線y=x2-2x+(m2-4m+4)與x軸有兩個交點,這兩點間的距離等于拋物線頂點到y(tǒng)軸距離的2倍,求拋物線的解析式。(2)已知拋物線y=-x2+ax+4,交x軸于A,B(點A在點B左邊)兩點,交y軸于點C,且OB-OA=OC,求此拋物線的解析式。8.對稱式。(1)平行四邊形ABCD對角線AC在x軸上,且A(-10,0),AC=16,D(2,6)。AD交y軸于E,將三角形ABC沿x軸折疊,點B到B1的位置,求經(jīng)過A,B,E三點的拋物線的解析式。(2)求與拋物線y=x2+4x+3關(guān)于y軸(或x軸)對稱的拋物線的解析式。9.切點式。(1)已知直線y=ax-a2(a≠0)與拋物線y=mx2有唯一公共點,求拋物線的解析式。(2)直線y=x+a與拋物線y=ax2+k的唯一公共點A(2,1),求拋物線的解析式。10.判別式式。(1)已知關(guān)于X的一元二次方程(m+1)x2+2(m+1)x+2=0有兩個相等的實數(shù)根,求拋物線y=-x2+(m+1)x+3解析式。(2)已知拋物線y=(a+2)x2-(a+1)x+2a的頂點在x軸上,求拋物線的解析式。23旋轉(zhuǎn)23.1圖形的旋轉(zhuǎn)知識點一旋轉(zhuǎn)的定義在平面內(nèi),把一個平面圖形繞著平面內(nèi)某一點O轉(zhuǎn)動一個角度,就叫做圖形的旋轉(zhuǎn),點O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。我們把旋轉(zhuǎn)中心、旋轉(zhuǎn)角度、旋轉(zhuǎn)方向稱為旋轉(zhuǎn)的三要素。知識點二旋轉(zhuǎn)的性質(zhì)旋轉(zhuǎn)的特征:(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等;(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(3)旋轉(zhuǎn)前后的圖形全等。理解以下幾點:圖形中的每一個點都繞旋轉(zhuǎn)中心旋轉(zhuǎn)了同樣大小的角度。(2)對應(yīng)點到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段相等,對應(yīng)角相等。(3)圖形的大小和形狀都沒有發(fā)生改變,只改變了圖形的位置。知識點三利用旋轉(zhuǎn)性質(zhì)作圖旋轉(zhuǎn)有兩條重要性質(zhì):(1)任意一對對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;(2)對應(yīng)點到旋轉(zhuǎn)中心的距離相等,它是利用旋轉(zhuǎn)的性質(zhì)作圖的關(guān)鍵。步驟可分為:①連:即連接圖形中每一個關(guān)鍵點與旋轉(zhuǎn)中心;②轉(zhuǎn):即把直線按要求繞旋轉(zhuǎn)中心轉(zhuǎn)過一定角度(作旋轉(zhuǎn)角)③截:即在角的另一邊上截取關(guān)鍵點到旋轉(zhuǎn)中心的距離,得到各點的對應(yīng)點;④接:即連接到所連接的各點。23.2中心對稱知識點一中心對稱的定義中心對稱:把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這個點對稱或中心對稱,這個點叫做對稱中心。注意以下幾點:中心對稱指的是兩個圖形的位置關(guān)系;只有一個對稱中心;繞對稱中心旋轉(zhuǎn)180°兩個圖形能夠完全重合。知識點二作一個圖形關(guān)于某點對稱的圖形要作出一個圖形關(guān)于某一點的成中心對稱的圖形,關(guān)鍵是作出該圖形上關(guān)鍵點關(guān)于對稱中心的對稱點。最后將對稱點按照原圖形的形狀連接起來,即可得出成中心對稱圖形。知識點三中心對稱的性質(zhì)有以下幾點:關(guān)于中心對稱的兩個圖形上的對應(yīng)點的連線都經(jīng)過對稱中心,并且都被對稱中心平分;關(guān)于中心對稱的兩個圖形能夠互相重合,是全等形;關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或共線)且相等。知識點四中心對稱圖形的定義把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。知識點五關(guān)于原點對稱的點的坐標在平面直角坐標系中,如果兩個點關(guān)于原點對稱,它們的坐標符號相反,即點p(x,y)關(guān)于原點對稱點為(-x,-y)。24圓24.1圓24.1.1圓知識點一圓的定義圓的定義:第一種:在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A所形成的圖形叫作圓。固定的端點O叫作圓心,線段OA叫作半徑。第二種:圓心為O,半徑為r的圓可以看成是所有到定點O的距離等于定長r的點的集合。比較圓的兩種定義可知:第一種定義是圓的形成進行描述的,第二種是運用集合的觀點下的定義,但是都說明確定了定點與定長,也就確定了圓。知識點二圓的相關(guān)概念弦:連接圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫作直徑?;。簣A上任意兩點間的部分叫做圓弧,簡稱弧。圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓。等圓:等夠重合的兩個圓叫做等圓。等弧:在同圓或等圓中,能夠互相重合的弧叫做等弧。弦是線段,弧是曲線,判斷等弧首要的條件是在同圓或等圓中,只有在同圓或等圓中完全重合的弧才是等弧,而不是長度相等的弧。24.1.2垂直于弦的直徑知識點一圓的對稱性圓是軸對稱圖形,任何一條直徑所在直線都是它的對稱軸。知識點二垂徑定理CMABD(1)CMABDAM=BM垂足為MAC=BCAD=BD垂徑定理的推論:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧如上圖所示,直徑CD與非直徑弦AB相交于點M,CD⊥ABAM=BMAC=BCAD=BD注意:因為圓的兩條直徑必須互相平分,所以垂徑定理的推論中,被平分的弦必須不是直徑,否則結(jié)論不成立。24.1.3弧、弦、圓心角知識點弦、弧、圓心角的關(guān)系弦、弧、圓心角之間的關(guān)系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。在同圓或等圓中,如果兩個圓心角,兩條弧,兩條弦中有一組量相等,那么它們所對應(yīng)的其余的各組量也相等。注意不能忽略同圓或等圓這個前提條件,如果丟掉這個條件,即使圓心角相等,所對的弧、弦也不一定相等,比如兩個同心圓中,兩個圓心角相同,但此時弧、弦不一定相等。24.1.4圓周角知識點一圓周角定理圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半。圓周角定理的推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對弦是直徑。圓周角定理揭示了同弧或等弧所對的圓周角與圓心角的大小關(guān)系?!巴』虻然 笔遣荒芨臑椤巴一虻认摇钡?,否則就不成立了,因為一條弦所對的圓周角有兩類。知識點二圓內(nèi)接四邊形及其性質(zhì)圓內(nèi)接多邊形:如果一個多邊形的所有頂點都在同一個圓上,這個多邊形叫做圓內(nèi)接多邊形,這個圓叫做這個多邊形的外接圓。圓內(nèi)接四邊形的性質(zhì):圓內(nèi)接四邊形的對角互補。24.2點、直線、圓和圓的位置關(guān)系24.2.1點和圓的位置關(guān)系知識點一點與圓的位置關(guān)系點與圓的位置關(guān)系有:點在圓外,點在圓上,點在圓內(nèi)三種。用數(shù)量關(guān)系表示:若設(shè)⊙O的半徑是r,點P到圓的距離OP=d,則有:點P在圓外d>r;點p在圓上d=r;點p在圓內(nèi)d<r。知識點二過已知點作圓經(jīng)過一個點的圓(如點A)O2O2O1O3A經(jīng)過兩點的圓(如點A、B)ABAB經(jīng)過三點的圓經(jīng)過在同一條直線上的三個點不能作圓不在同一條直線上的三個點確定一個圓,即經(jīng)過不在同一條直線上的三個點可以作圓,且只能作一個圓。如經(jīng)過不在同一條直線上的三個點A、B、C作圓,作法:連接AB、BC(或AB、AC或BC、AC)并作它們的垂直平分線,兩條垂直平分線相交于點O,以點O為圓心,以O(shè)A(或OB、OC)的長為半徑作圓即可,如圖,這樣的圓只能作一個。AAOOCBCB知識點三三角形的外接圓與外心經(jīng)過三角形三個頂點可以作一個圓,這個圓叫做三角形的外接圓。外接圓的圓心是三角形三條邊的垂直平分線的交點,叫做這個三角形的外心。知識點四反證法反證法:假設(shè)命題的結(jié)論不成立,經(jīng)過推理得出矛盾,由矛盾斷定所作假設(shè)不正確,從而得到原命題成立,這種證明命題的方法叫做反證法。反證法的一般步驟:假設(shè)命題的結(jié)論不成立;從假設(shè)出發(fā),經(jīng)過邏輯推理,推出或與定義,或與公理,或與定理,或與已知等相矛盾的結(jié)論;由矛盾判定假設(shè)不正確,從而得出原命題正確。24.2.2直線和圓的位置關(guān)系知識點一直線與圓的位置關(guān)系直線與圓的位置關(guān)系有:相交、相切、相離三種。直線與圓的位置關(guān)系可以用數(shù)量關(guān)系表示若設(shè)⊙O的半徑是r,直線l與圓心0的距離為d,則有:直線l和⊙O相交d<r;直線l和⊙O相切d=r;直線l和⊙O相離d>r。知識點二切線的判定和性質(zhì)切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。切線的性質(zhì)定理:圓的切線垂直于過切點的半徑。切線的其他性質(zhì):切線與圓只有一個公共點;切線到圓心的距離等于半徑;經(jīng)過圓心且垂直于切線的直線必過切點;必過切點且垂直于切線的直線必經(jīng)過圓心。知識點三切線長定理切線長的定義:經(jīng)過園外一點作圓的切線,這點和切點之間的線段的長,叫做這點到圓的切線長。切線長定理:從圓外一點可以引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。注意:切線和切線長是兩個完全不同的概念,必須弄清楚切線是直線,是不能度量的;切線長是一條線段的長,這條線段的兩個端點一個是在圓外一點,另一個是切點。知識點四三角形的內(nèi)切圓和內(nèi)心三角形的內(nèi)切圓定義:與三角形各邊都相切的圓叫做三角形的內(nèi)切圓。這個三角形叫做圓的外切三角形。三角形的內(nèi)心:三角形內(nèi)切圓的圓心叫做三角形的內(nèi)心。注意:三角形的內(nèi)心是三角形三條角平分線的交點,所以當(dāng)三角形的內(nèi)心已知時,過三角形的頂點和內(nèi)心的射線,必平分三角形的內(nèi)角。24.2.3圓和圓的位置關(guān)系知識點一圓與圓的位置關(guān)系圓與圓的位置關(guān)系有五種:如果兩個圓沒有公共點,就說這兩個圓相離,包括外離和內(nèi)含兩種;如果兩個圓只有一個公共點,就說這兩個圓相切,包括內(nèi)切和外切兩種;如果兩個圓有兩個公共點,就說這兩個圓相交。圓與圓的位置關(guān)系可以用數(shù)量關(guān)系來表示:若設(shè)兩圓圓心之間的距離為d,兩圓的半徑分別是r1r2,且r1<r2,則有兩圓外離d>r1+r2兩圓外切d=r1+r2兩圓相交r2-r1<d<r1+r2兩圓內(nèi)切d=r2-r1兩圓內(nèi)含d<r2-r124.3正多邊形和圓知識點一正多邊形的外接圓和圓的內(nèi)接正多邊形正多邊形與圓的關(guān)系非常密切:把圓分成n(n是大于2的自然數(shù))等份,順次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓就是這個正多邊形的外接圓。正多邊形的中心:一個正多邊形的外接圓的圓心叫做這個正多邊形的中心。正多邊形的半徑:外接圓的半徑叫做正多邊形的半徑。正多邊形的中心角:正多邊形每一條邊所對的圓心角叫做正多邊形的中心角。正多邊形的邊心距:中心到正多邊形一邊的距離叫做正多邊形的邊心距。知識點二正多邊形的性質(zhì)正n邊形的半徑和邊心距把正多邊形分成2n個全等的直角三角形。所有的正多邊形都是軸對稱圖形,每個正n邊形共有n條對稱軸,每條對稱軸都經(jīng)過正n邊形的中心;當(dāng)正n邊形的邊數(shù)為偶數(shù)時,這個正n邊形也是中心對稱圖形,正n邊形的中心就是對稱中心。正n邊形的每一個內(nèi)角等于,中心角和外角相等,等于。24.4弧長和扇形面積知識點一弧長公式l=在半徑為R的圓中,360°的圓心角所對的弧長就是圓的周長C=2πR,所以n°的圓心角所對的弧長的計算公式l=×2πR=。知識點二扇形面積公式在半徑為R的圓中,360°的圓心角所對的扇形面積就是圓的面積S=πR2,所以圓心角為n°的扇形的面積為S扇形=。比較扇形的弧長公式和面積公式發(fā)現(xiàn):S扇形=知識點三圓錐的側(cè)面積和全面積圓錐的側(cè)面積是曲面,沿著圓錐的一條母線將圓錐的側(cè)面展開,容易得到圓錐的側(cè)面展開圖是一個扇形。設(shè)圓錐的母線長為l,底面圓的半徑為r,那么這個扇形的半徑為l,扇形的弧長為2πr,因此圓錐的側(cè)面積。圓錐的全面積為。25.1隨機事件與概率25.1.1隨機事件知識點一必然事件、不可能事件、隨機事件在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件;相反地,有些事件必然不會發(fā)生,這樣的事件稱為不可能事件;在一定條件下,可能發(fā)生也可能不會發(fā)生的事件稱為隨機事件。必然事件和不可能事件是否會發(fā)生,是可以事先確定的,所以它們統(tǒng)稱為確定性事件。知識點二事件發(fā)生的可能性的大小必然事件的可能性最大,不可能事件的可能性最小,隨機事件發(fā)生的可能性有大有小。不同的隨機事件發(fā)生的可能性的大小有可能不同。25.1.2概率知識點概率一般地,對于一個隨機事件A,我們把刻畫其發(fā)生可能性大小的數(shù)值,稱為隨機事件A發(fā)生的概率,記作P(A)。一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=。由m和n的含義可知0≤m≤n,因此0≤≤1,因此0≤P(A)≤1.當(dāng)A為必然事件時,P(A)=1;當(dāng)A為不可能事件時,P(A)=0.25.2用列舉法求概率知識點一用列舉法求概率一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=。知識點二用列表發(fā)求概率當(dāng)一次試驗要涉及兩個因素并且可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常用列表法。列表法是用表格的形式反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,以及某一事件發(fā)生的可能的次數(shù)和方式,并求出概率的方法。知識點三用樹形圖求概率當(dāng)一次試驗要涉及3個或更多的因素時,列方形表就不方便了,為不重不漏地列出所有可能的結(jié)果,通常采用樹形圖。樹形圖是反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,并求出概率的方法。樹形圖法同樣適用于各種情況出現(xiàn)的總次數(shù)不是很大時求概率的方法。在用列表法和樹形圖法求隨機事件的概率時,應(yīng)注意各種情況出現(xiàn)的可能性務(wù)必相同。25.3用頻率估計概率知識點在隨機事件中,一個隨機事件發(fā)生與否事先無法預(yù)測,表面上看似無規(guī)律可循,但當(dāng)我們做大量重復(fù)試驗時,這個事件發(fā)生的頻率呈現(xiàn)出穩(wěn)定性,因此做了大量試驗后,可以用一個事件發(fā)生的頻率作為這個事件的概率的估計值。一般地,在大量重復(fù)試驗中,如果事件A發(fā)生的頻率穩(wěn)定于某一個常數(shù)P,那么事件A發(fā)生的頻率P(A)=p。人教版九年級下冊數(shù)學(xué)課本知識點總結(jié)26反比例函數(shù)一、反比例函數(shù)的概念1.()可以寫成()的形式,注意自變量x的指數(shù)為,在解決有關(guān)自變量指數(shù)問題時應(yīng)特別注意系數(shù)這一限制條件;2.()也可以寫成xy=k的形式,用它可以迅速地求出反比例函數(shù)解析式中的k,從而得到反比例函數(shù)的解析式;3.反比例函數(shù)的自變量,故函數(shù)圖像與x軸、y軸無交點.二、反比例函數(shù)的圖像畫法反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、第三象限或第二、第四象限,它們與原點對稱,由于反比例函數(shù)中自變量函數(shù)中自變量,函數(shù)值,所以它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。反比例的畫法分三個步驟:⑴列表;⑵描點;⑶連線。再作反比例函數(shù)的圖像時應(yīng)注意以下幾點:①列表時選取的數(shù)值宜對稱選??;②列表時選取的數(shù)值越多,畫的圖像越精確;③連線時,必須根據(jù)自變量大小從左至右(或從右至左)用光滑的曲線連接,切忌畫成折線;④畫圖像時,它的兩個分支應(yīng)全部畫出,但切忌將圖像與坐標軸相交。三、反比例函數(shù)及其圖像的性質(zhì)1.函數(shù)解析式:()2.自變量的取值范圍:3.圖像:(1)圖像的形狀:雙曲線,越大,圖像的彎曲度越小,曲線越平直。越小,圖像的彎曲度越大。(2)圖像的位置和性質(zhì):當(dāng)時,圖像的兩支分別位于一、三象限;在每個象限內(nèi),y隨x的增大而減??;當(dāng)時,圖像的兩支分別位于二、四象限;在每個象限內(nèi),y隨x的增大而增大。(3)對稱性:圖像關(guān)于原點對稱,即若(a,b)在雙曲線的一支上,則(,)在雙曲線的另一支。圖像關(guān)于直線對稱,即若(a,b)在雙曲線的一支上,則(,)和(,)在雙曲線的另一支上。.4.k的幾何意義如圖1,設(shè)點P(a,b)是雙曲線上任意一點,作PA⊥x軸于A點,PB⊥y軸于B點,則矩形PBOA的面積是|k|(三角形PAO和三角形PBO的面積都是1/2|k|)。如圖2,由雙曲線的對稱性可知,P關(guān)于原點的對稱點Q也在雙曲線上,作QC⊥PA的延長線于C,則有三角形PQC的面積為2|k|。5.說明:(1)雙曲線的兩個分支是斷開的,研究反比例函數(shù)的增減性時,要將兩個分支分別討論,不能一概而論。(2)直線與雙曲線的關(guān)系:當(dāng)時,兩圖像沒有交點;當(dāng)時,兩圖像必有兩個交點,且這兩個交點關(guān)于原點成中心對稱.四、實際問題與反比例函數(shù)1.求函數(shù)解析式的方法:(1)待定系數(shù)法;(2)根據(jù)實際意義列函數(shù)解析式。2.注意學(xué)科間知識的綜合,但重點放在對數(shù)學(xué)知識的研究上.五、充分利用數(shù)形結(jié)合的思想解決問題27相似三角形一、圖形的相似1.圖形的相似:如果兩個圖形形狀相同,但大小不一定相等,那么這兩個圖形相似。(相似的符號:∽)性質(zhì):相似多邊形的對應(yīng)角相等,對應(yīng)邊的比相等。2.判定:如果兩個多邊形滿足對應(yīng)角相等,對應(yīng)邊的比相等,那么這兩個多邊形相似。3.相似比:相似多邊形的對應(yīng)邊的比叫相似比。相似比為1時,相似的兩個圖形全等。二、相似三角形1.性質(zhì):平行于三角形一邊的直線和其他兩邊或兩邊延長線相交,所構(gòu)成的三角形與原三角形相似。2.判定.①如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似。②如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似。③如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么這兩個三角形相似。(①三邊對應(yīng)成比例②兩個三角形的兩個角對應(yīng)相等;③兩邊對應(yīng)成比例,且夾角相等;④相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。)3.相似三角形應(yīng)用視點:眼睛的位置;仰角:視線與水平線的夾角;盲區(qū):看不到的區(qū)域。4.相似三角形的周長與面積:①相似三角形周長的比等于相似比。②相似多邊形周長的比等于相似比。③相似三角形面積的比等于相似比的平方。④相似多邊形面積的比等于相似比的平方。三、位似1.位似圖形:如果兩個圖形不僅是相似圖形,而且每組對應(yīng)點的連線交于一點,對應(yīng)邊互相平行,那么這兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。2.性質(zhì):在平面直角體系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形的對應(yīng)點的坐標的比等于k或-k。注意1、位似是一種具有位置關(guān)系的相似,所以兩個圖形是位似圖形,必定是相似圖形,而相似圖形不一定是位似圖形;2、兩個位似圖形的位似中心只有一個;3、兩個位似圖形可能位于位似中心的兩側(cè),也可能位于位似中心的一側(cè);4、位似比就是相似比.利用位似圖形的定義可判斷兩個圖形是否位似;5.位似圖形的對應(yīng)點和位似中心在同一直線上,它們到位似中心的距離之比等于相似比。位似多邊形的對應(yīng)邊平行或共線。位似可以將一個圖形放大或縮小。位似圖形的中心可以在任意的一點,不過位似圖形也會隨著位似中心的位變而位變。6.根據(jù)一個位似中心可以作兩個關(guān)于已知圖形一定位似比的位似圖形,這兩個圖形分布在位似中心的兩側(cè),并且關(guān)于位似中心對稱。28銳角三角函數(shù)一、銳角三角函數(shù)1.正弦:在Rt△ABC中,銳角∠A的對邊a與斜邊的比叫做∠A的正弦,記作sinA,即sinA=∠A的對邊/斜邊=a/c;2.余弦:在Rt△ABC中,銳角∠A的鄰邊b與斜邊的比叫做∠A的余弦,記作cosA,即cosA=∠A的鄰邊/斜邊=b/c;3.正切:在Rt△ABC中,銳角∠A的對邊與鄰邊的比叫做∠A的正切,記作tanA,即tanA=∠A的對邊/∠A的鄰邊=a/b。①tanA是一個完整的符號,它表示∠A的正切,記號里習(xí)慣省去角的符號“∠”;②tanA沒有單位,它表示一個比值,即直角三角形中∠A的對邊與鄰邊的比;③tanA不表示“tan”乘以“A”;④tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。4、余切:定義:在Rt△ABC中,銳角∠A的鄰邊與對邊的比叫做∠A的余切,記作cotA,即cotA=∠A的鄰邊/∠A的對邊=b/a;5、一個銳角的正弦、余弦、正切、余切分別等于它的余角的余弦、正弦、余切、正切。(通常我們稱正弦、余弦互為余函數(shù)。同樣,也稱正切、余切互為余函數(shù),可以概括為:一個銳角的三角函數(shù)等于它的余角的余函數(shù))用等式表達:若∠A為銳角,則①sinA=cos(90°?∠A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車隊安全培訓(xùn)總結(jié)反思
- 2026年消防安全及防火安全知識競賽試題及答案
- 車間負責(zé)人安全培訓(xùn)講話課件
- 2026年燃氣安全知識競賽試題及答案
- 車間級安全培訓(xùn)目的課件
- 車間級安全培訓(xùn)學(xué)時課件
- 2026年煤礦采煤機(掘進機)操作考試試題及答案
- 銀行金融衍生品業(yè)務(wù)制度
- 2026年寄生蟲及檢驗試題及答案
- 2026年電工考試題及答案
- 谷歌員工關(guān)系管理案例
- 班級互動小游戲-課件共30張課件-小學(xué)生主題班會版
- 物流企業(yè)倉儲安全操作規(guī)程與培訓(xùn)教材
- 黃體酮破裂課件
- 中學(xué)學(xué)生教育懲戒規(guī)則實施方案(2025修訂版)
- ISO 9001(DIS)-2026與ISO9001-2015英文標準對照版(編輯-2025年9月)
- 結(jié)算審計踏勘現(xiàn)場實施方案詳細版
- 手機玻璃工廠年終總結(jié)報告
- 全國大學(xué)生職業(yè)規(guī)劃大賽《信息與計算科學(xué)》專業(yè)生涯發(fā)展展示
- 急診科護士年終總結(jié)匯報
- 瓦斯發(fā)電安全規(guī)程培訓(xùn)課件
評論
0/150
提交評論