2023初一下冊數(shù)學(xué)課程教案例文_第1頁
2023初一下冊數(shù)學(xué)課程教案例文_第2頁
2023初一下冊數(shù)學(xué)課程教案例文_第3頁
2023初一下冊數(shù)學(xué)課程教案例文_第4頁
2023初一下冊數(shù)學(xué)課程教案例文_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第2023初一下冊數(shù)學(xué)課程教案例文我們對于教學(xué)設(shè)計的結(jié)構(gòu)安排最終還是要以具體的課程內(nèi)容、教學(xué)任務(wù)以及實際班級學(xué)情為準(zhǔn)繩,這需要我們要靈活地理解和處理教學(xué)設(shè)計的基本結(jié)構(gòu),針對不同的課型做出多樣化的安排。今天小編在這里給大家分享一些有關(guān)于2023初一下冊數(shù)學(xué)課程教案例文,希望可以幫助到大家。

2023初一下冊數(shù)學(xué)課程教案例文1

一、學(xué)習(xí)目標(biāo):

1.多項式除以單項式的運算法則及其應(yīng)用.

2.多項式除以單項式的運算算理.

二、重點難點:

重點:多項式除以單項式的運算法則及其應(yīng)用

難點:探索多項式與單項式相除的運算法則的過程

三、合作學(xué)習(xí):

(一)回顧單項式除以單項式法則

(二)學(xué)生動手,探究新課

1.計算下列各式:

(1)(am+bm)÷m(2)(a2+ab)÷a(3)(4x2y+2xy2)÷2xy.

2.提問:①說說你是怎樣計算的②還有什么發(fā)現(xiàn)嗎

(三)總結(jié)法則

1.多項式除以單項式:先把這個多項式的每一項除以___________,再把所得的商______

2.本質(zhì):把多項式除以單項式轉(zhuǎn)化成______________

四、精講精練

例:(1)(12a3-6a2+3a)÷3a;(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);

(3)[(x+y)2-y(2x+y)-8x]÷2x(4)(-6a3b3+8a2b4+10a2b3+2ab2)÷(-2ab2)

隨堂練習(xí):教科書練習(xí)

五、小結(jié)

1、單項式的除法法則

2、應(yīng)用單項式除法法則應(yīng)注意:

A、系數(shù)先相除,把所得的結(jié)果作為商的系數(shù),運算過程中注意單項式的系數(shù)飽含它前面的符號

B、把同底數(shù)冪相除,所得結(jié)果作為商的因式,由于目前只研究整除的情況,所以被除式中某一字母的指數(shù)不小于除式中同一字母的指數(shù);

C、被除式單獨有的字母及其指數(shù),作為商的一個因式,不要遺漏;

D、要注意運算順序,有乘方要先做乘方,有括號先算括號里的,同級運算從左到右的順序進行.

E、多項式除以單項式法則

2023初一下冊數(shù)學(xué)課程教案例文2

一、教學(xué)目標(biāo)

1.理解分式的基本性質(zhì).

2.會用分式的基本性質(zhì)將分式變形.

二、重點、難點

1.重點:理解分式的基本性質(zhì).

2.難點:靈活應(yīng)用分式的基本性質(zhì)將分式變形.

3.認(rèn)知難點與突破方法

教學(xué)難點是靈活應(yīng)用分式的基本性質(zhì)將分式變形.突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì).應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形.

三、例、習(xí)題的意圖分析

1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個整式,填到括號里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質(zhì)進行約分、通分.值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學(xué)生做題時出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解.

3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補充例5.

四、課堂引入

1.請同學(xué)們考慮:與相等嗎與相等嗎為什么

2.說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)

3.提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì).

五、例題講解

P7例2.填空:

[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式.

P11例4.通分:

[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

,,,,。

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解:=,=,=,=,=。

六、隨堂練習(xí)

1.填空:

(1)=(2)=

(3)=(4)=

2.約分:

(1)(2)(3)(4)

3.通分:

(1)和(2)和

(3)和(4)和

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

(1)(2)(3)(4)

七、課后練習(xí)

1.判斷下列約分是否正確:

(1)=(2)=

(3)=0

2.通分:

(1)和(2)和

3.不改變分式的值,使分子第一項系數(shù)為正,分式本身不帶“-”號.

(1)(2)

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y

2.(1)(2)(3)(4)-2(x-y)2

3.通分:

(1)=,=

(2)=,=

(3)==

(4)==

4.(1)(2)(3)(4)

2023初一下冊數(shù)學(xué)課程教案例文3

一、教學(xué)目標(biāo):理解分式乘除法的法則,會進行分式乘除運算.

二、重點、難點

1.重點:會用分式乘除的法則進行運算.

2.難點:靈活運用分式乘除的法則進行運算.

3.難點與突破方法

分式的運算以有理數(shù)和整式的運算為基礎(chǔ),以因式分解為手段,經(jīng)過轉(zhuǎn)化后往經(jīng)過轉(zhuǎn)化后往往可視為整式的運算.分式的乘除的法則和運算順序可類比分?jǐn)?shù)的有關(guān)內(nèi)容得到.所以,教給學(xué)生類比的數(shù)學(xué)思想方法能較好地實現(xiàn)新知識的轉(zhuǎn)化.只要做到這一點就可充分發(fā)揮學(xué)生的主體性,使學(xué)生主動獲取知識.教師要重點處理分式中有別于分?jǐn)?shù)運算的有關(guān)內(nèi)容,使學(xué)生規(guī)范掌握,特別是運算符號的問題,要抓住出現(xiàn)的問題認(rèn)真落實.

三、例、習(xí)題的意圖分析

1.P13本節(jié)的引入還是用問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的多少倍,這兩個引例所得到的容積的高是,大拖拉機的工作效率是小拖拉機的工作效率的倍.引出了分式的乘除法的實際存在的意義,進一步引出P14[觀察]從分?jǐn)?shù)的乘除法引導(dǎo)學(xué)生類比出分式的乘除法的法則.但分析題意、列式子時,不易耽誤太多時間.

2.P14例1應(yīng)用分式的乘除法法則進行計算,注意計算的結(jié)果如能約分,應(yīng)化簡到最簡.

3.P14例2是較復(fù)雜的分式乘除,分式的分子、分母是多項式,應(yīng)先把多項式分解因式,再進行約分.

4.P14例3是應(yīng)用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據(jù)問題的實際意義可知a1,因此(a-1)2=a2-2a+1四、課堂引入

1.出示P13本節(jié)的引入的問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的倍.

[引入]從上面的問題可知,有時需要分式運算的乘除.本節(jié)我們就討論數(shù)量關(guān)系需要進行分式的乘除運算.我們先從分?jǐn)?shù)的乘除入手,類比出分式的乘除法法則.

1.P14[觀察]從上面的算式可以看到分式的乘除法法則.

3.[提問]P14[思考]類比分?jǐn)?shù)的乘除法法則,你能說出分式的乘除法法則

類似分?jǐn)?shù)的乘除法法則得到分式的乘除法法則的結(jié)論.

五、例題講解

P14例1.

[分析]這道例題就是直接應(yīng)用分式的乘除法法則進行運算.應(yīng)該注意的是運算結(jié)果應(yīng)約分到最簡,還應(yīng)注意在計算時跟整式運算一樣,先判斷運算符號,在計算結(jié)果.

P15例2.

[分析]這道例題的分式的分子、分母是多項式,應(yīng)先把多項式分解因式,再進行約分.結(jié)果的分母如果不是單一的多項式,而是多個多項式相乘是不必把它們展開.

P15例.

[分析]這道應(yīng)用題有兩問,第一問是:哪一種小麥的單位面積產(chǎn)量先分別求出“豐收1號”、“豐收2號”小麥試驗田的面積,再分別求出“豐收1號”、“豐收2號”小麥試驗田的單位面積產(chǎn)量,分別是、,還要判斷出以上兩個分式的值,哪一個值更大.要根據(jù)問題的實際意義可知a1,因此(a-1)2=a2-2a+1六、隨堂練習(xí)

計算

(1)(2)(3)

(4)-8xy(5)(6)

七、課后練習(xí)

計算

(1)(2)(3)

(4)(5)(6)

八、答案:

六、(1)ab(2)(3)(4)-20x2(5)

(6)

七、(1)(2)(3)(4)

(5)(6)

2023初一下冊數(shù)學(xué)課程教案例文4

一、教學(xué)目標(biāo):熟練地進行分式乘除法的混合運算.

二、重點、難點

1.重點:熟練地進行分式乘除法的混合運算.

2.難點:熟練地進行分式乘除法的混合運算.

3.認(rèn)知難點與突破方法:

緊緊抓住分式乘除法的混合運算先統(tǒng)一成為乘法運算這一點,然后利用上節(jié)課分式乘法運算的基礎(chǔ),達到熟練地進行分式乘除法的混合運算的目的.課堂練習(xí)以學(xué)生自己討論為主,教師可組織學(xué)生對所做的題目作自我評價,關(guān)鍵是點撥運算符號問題、變號法則.

三、例、習(xí)題的意圖分析

1.P17頁例4是分式乘除法的混合運算.分式乘除法的混合運算先把除法統(tǒng)一成乘法運算,再把分子、分母中能因式分解的多項式分解因式,最后進行約分,注意最后的結(jié)果要是最簡分式或整式.

教材P17例4只把運算統(tǒng)一乘法,而沒有把25x2-9分解因式,就得出了最后的結(jié)果,教師在見解是不要跳步太快,以免學(xué)習(xí)有困難的學(xué)生理解不了,造成新的疑點.

2,P17頁例4中沒有涉及到符號問題,可運算符號問題、變號法則是學(xué)生學(xué)習(xí)中重點,也是難點,故補充例題,突破符號問題.

四、課堂引入

計算

(1)(2)

五、例題講解

(P17)例4.計算

[分析]是分式乘除法的混合運算.分式乘除法的混合運算先統(tǒng)一成為乘法運算,再把分子、分母中能因式分解的多項式分解因式,最后進行約分,注意最后的計算結(jié)果要是最簡的.

(補充)例.計算

(1)

=(先把除法統(tǒng)一成乘法運算)

=(判斷運算的符號)

=(約分到最簡分式)

(2)

=(先把除法統(tǒng)一成乘法運算)

=(分子、分母中的多項式分解因式)

=

=

六、隨堂練習(xí)

計算

(1)(2)

(3)(4)

七、課后練習(xí)

計算

(1)(2)

(3)(4)

八、答案:

六.(1)(2)(3)(4)-y

七.(1)(2)(3)(4)

2023初一下冊數(shù)學(xué)課程教案例文5

一、教學(xué)目標(biāo):理解分式乘方的運算法則,熟練地進行分式乘方的運算.

二、重點、難點

1.重點:熟練地進行分式乘方的運算.

2.難點:熟練地進行分式乘、除、乘方的混合運算.

3.認(rèn)知難點與突破方法

講解分式乘方的運算法則之前,根據(jù)乘方的意義和分式乘法的法則,計算===,===,……

順其自然地推導(dǎo)可得:

===,即=.(n為正整數(shù))

歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方.

三、例、習(xí)題的意圖分析

1.P17例5第(1)題是分式的乘方運算,它與整式的乘方一樣應(yīng)先判

斷乘方的結(jié)果的符號,在分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運算,應(yīng)對學(xué)生強調(diào)運算順序:先做乘方,再做乘除..

2.教材P17例5中象第(1)題這樣的分式的乘方運算只有一題,對于初學(xué)者來說,練習(xí)的量顯然少了些,故教師應(yīng)作適當(dāng)?shù)难a充練習(xí).同樣象第(2)題這樣的分式的乘除與乘方的混合運算,也應(yīng)相應(yīng)的增加幾題為好.

分式的乘除與乘方的混合運算是學(xué)生學(xué)習(xí)中重點,也是難點,故補充例題,強調(diào)運算順序,不要盲目地跳步計算,提高正確率,突破這個難點.

四、課堂引入

計算下列各題:

(1)==()(2)==()

(3)==()

[提問]由以上計算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎

五、例題講解

(P17)例5.計算

[分析]第(1)題是分式的乘方運算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號,再分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運算,應(yīng)對學(xué)生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論