2022-2023學(xué)年安徽省銅陵一中高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第1頁
2022-2023學(xué)年安徽省銅陵一中高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第2頁
2022-2023學(xué)年安徽省銅陵一中高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第3頁
2022-2023學(xué)年安徽省銅陵一中高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第4頁
2022-2023學(xué)年安徽省銅陵一中高二數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測(cè)試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023高二下數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若某空間幾何體的三視圖如圖所示,則該幾何體的體積為()A.2π+2 B.4π+2C.2π+ D.4π+2.中,角A,B,C的對(duì)邊分別是a,b,c,已知,則A=A. B. C. D.3.已知向量,,其中,.若,則的最大值為()A.1 B.2 C. D.4.與復(fù)數(shù)相等的復(fù)數(shù)是()A. B. C. D.5.已知,,若,則x的值為()A. B. C. D.6.已知函數(shù),若對(duì)于區(qū)間上的任意,都有,則實(shí)數(shù)的最小值是()A.20 B.18C.3 D.07.根據(jù)如圖所示的程序框圖,當(dāng)輸入的值為3時(shí),輸出的值等于()A.1 B. C. D.8.設(shè)a=log54,b=(log53)2,c=log45,則()A.a(chǎn)<c<b B.b<c<a C.a(chǎn)<b<c D.b<a<c9.一個(gè)隨機(jī)變量的分布列如圖,其中為的一個(gè)內(nèi)角,則的數(shù)學(xué)期望為()A. B. C. D.10.已知的二項(xiàng)展開式中含項(xiàng)的系數(shù)為,則()A. B. C. D.11.某同學(xué)從家到學(xué)校要經(jīng)過兩個(gè)十字路口.設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在第一個(gè)路口遇到紅燈的概率為,兩個(gè)路口都遇到紅燈的概率為,則他在第二個(gè)路口遇到紅燈的概率為()A. B. C. D.12.在某個(gè)物理實(shí)驗(yàn)中,測(cè)得變量x和變量y的幾組數(shù)據(jù),如下表:xy則下列選項(xiàng)中對(duì)x,y最適合的擬合函數(shù)是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為的正方體中,是棱的中點(diǎn),則到平面的距離等于_____.14.已知實(shí)數(shù)x,y滿足條件,則z=x+3y的最小值是_______________.15.為強(qiáng)化安全意識(shí),某校擬在周一至周五的五天中隨機(jī)選擇天進(jìn)行緊急疏散演練,則選擇的天恰好為連續(xù)天的概率是__________.16.化簡__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二項(xiàng)式的展開式中各項(xiàng)的系數(shù)和為.(1)求;(2)求展開式中的常數(shù)項(xiàng).18.(12分)現(xiàn)從某高中隨機(jī)抽取部分高二學(xué)生,調(diào)査其到校所需的時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中到校所需時(shí)間的范圍是,樣本數(shù)據(jù)分組為.(1)求直方圖中的值;(2)如果學(xué)生到校所需時(shí)間不少于1小時(shí),則可申請(qǐng)?jiān)趯W(xué)校住宿.若該校錄取1200名新生,請(qǐng)估計(jì)高二新生中有多少人可以申請(qǐng)住宿;(3)以直方圖中的頻率作為概率,現(xiàn)從該學(xué)校的高二新生中任選4名學(xué)生,用表示所選4名學(xué)生中“到校所需時(shí)間少于40分鐘”的人數(shù),求的分布列和數(shù)學(xué)期望.19.(12分)已知函數(shù).(1)若,證明:;(2)若只有一個(gè)極值點(diǎn),求的取值范圍.20.(12分)在中,角所對(duì)的邊長分別為,且滿足.(Ⅰ)求的大小;(Ⅱ)若的面積為,求的值.21.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)是否存在,使得在區(qū)間的最小值為且最大值為1?若存在,求出的所有值;若不存在,說明理由.22.(10分)已知函數(shù),.(1)當(dāng)時(shí),求的最小值;(2)當(dāng)時(shí),若存在,使得對(duì)任意的恒成立,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

試題分析:由三視圖知幾何體是一個(gè)簡單的組合體,上面是一個(gè)四棱錐,四棱錐的底面是一個(gè)正方形,對(duì)角線長是,側(cè)棱長,高是,下面是一個(gè)圓柱,圓柱的底面直徑是,高是,所以組合體的體積是,故選C.考點(diǎn):幾何體的三視圖及體積的計(jì)算.【方法點(diǎn)晴】本題主要考查了幾何體的三視圖及其體積的計(jì)算,著重考查了推理和運(yùn)算能力及空間想象能力,屬于中檔試題,解答此類問題的關(guān)鍵是根據(jù)三視圖的規(guī)則“長對(duì)正、寬相等、高平齊”的原則,還原出原幾何體的形狀,本題的解答中根據(jù)三視圖得出上面一個(gè)四棱錐、下面是一個(gè)圓柱組成的組合體,得到幾何體的數(shù)量關(guān)系是解答的關(guān)鍵,屬于基礎(chǔ)題.2、C【解析】試題分析:由余弦定理得:,因?yàn)?,所以,因?yàn)?,所以,因?yàn)?,所以,故選C.【考點(diǎn)】余弦定理【名師點(diǎn)睛】本題主要考查余弦定理的應(yīng)用、同角三角函數(shù)的基本關(guān)系,是高考常考知識(shí)內(nèi)容.本題難度較小,解答此類問題,注重邊角的相互轉(zhuǎn)換是關(guān)鍵,本題能較好地考查考生分析問題、解決問題的能力及基本計(jì)算能力等.3、D【解析】

已知向量,,根據(jù),得到,即,再利用基本不等式求解.【詳解】已知向量,,因?yàn)?,所以,即,又因?yàn)椋?,所以,?dāng)且僅當(dāng),,即時(shí),取等號(hào),所以的最大值為.故選:D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積運(yùn)算和基本不等式的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.4、C【解析】

根據(jù)復(fù)數(shù)運(yùn)算,化簡復(fù)數(shù),即可求得結(jié)果.【詳解】因?yàn)?故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的運(yùn)算,屬基礎(chǔ)題.5、D【解析】此題考查向量的數(shù)量積解:因?yàn)?,所以選D.答案:D6、A【解析】

對(duì)于區(qū)間[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等價(jià)于對(duì)于區(qū)間[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,求最值,即可得出結(jié)論.【詳解】對(duì)于區(qū)間[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等價(jià)于對(duì)于區(qū)間[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函數(shù)在[﹣3,﹣1]、[1,2]上單調(diào)遞增,在[﹣1,1]上單調(diào)遞減,∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19,∴f(x)max﹣f(x)min=20,∴t≥20,∴實(shí)數(shù)t的最小值是20,故答案為A【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查恒成立問題,正確求導(dǎo),確定函數(shù)的最值是關(guān)鍵.7、C【解析】

根據(jù)程序圖,當(dāng)x<0時(shí)結(jié)束對(duì)x的計(jì)算,可得y值.【詳解】由題x=3,x=x-2=3-1,此時(shí)x>0繼續(xù)運(yùn)行,x=1-2=-1<0,程序運(yùn)行結(jié)束,得,故選C.【點(diǎn)睛】本題考查程序框圖,是基礎(chǔ)題.8、D【解析】

∵a=log54<log55=1,b=(log53)2<(log55)2=1,c=log45>log44=1,所以c最大單調(diào)增,所以又因?yàn)樗詁<a所以b<a<c.故選D.9、D【解析】

利用二倍角的余弦公式以及概率之和為1,可得,然后根據(jù)數(shù)學(xué)期望的計(jì)算公式可得結(jié)果.【詳解】由,得,所以或(舍去)則,故選:D【點(diǎn)睛】本題考查給出分布列,數(shù)學(xué)期望的計(jì)算,掌握公式,細(xì)心計(jì)算,可得結(jié)果.10、C【解析】分析:先根據(jù)二項(xiàng)式定展開式通項(xiàng)公式求m,再求定積分.詳解:因?yàn)榈亩?xiàng)展開式中,所以,因此選C.點(diǎn)睛:求二項(xiàng)展開式有關(guān)問題的常見類型及解題策略(1)求展開式中的特定項(xiàng).可依據(jù)條件寫出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).11、C【解析】

記在兩個(gè)路口遇到紅燈分別為事件A,B,由于兩個(gè)事件相互獨(dú)立,所以,代入數(shù)據(jù)可得解.【詳解】記事件A為:“在第一個(gè)路口遇到紅燈”,事件B為:“在第二個(gè)路口遇到紅燈”,由于兩個(gè)事件相互獨(dú)立,所以,所以.【點(diǎn)睛】本題考查相互獨(dú)立事件同時(shí)發(fā)生的概率問題,考查運(yùn)用概率的基本運(yùn)算.12、D【解析】

根據(jù)所給數(shù)據(jù),代入各函數(shù),計(jì)算驗(yàn)證可得結(jié)論.【詳解】解:根據(jù),,代入計(jì)算,可以排除;根據(jù),,代入計(jì)算,可以排除、;將各數(shù)據(jù)代入檢驗(yàn),函數(shù)最接近,可知滿足題意故選:.【點(diǎn)睛】本題考查了函數(shù)關(guān)系式的確定,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由題意畫出正方體,求出的面積,利用等體積法求解到平面的距離.【詳解】由題意,畫出正方體如圖所示,,點(diǎn)是中點(diǎn),所以,在中,,,,所以,,所以,設(shè)到平面的距離為,由,得,解得,.故答案為:【點(diǎn)睛】本題主要考查求點(diǎn)到平面距離的方法、棱錐體積公式、余弦定理和三角形面積公式的應(yīng)用,考查等體積法的應(yīng)用和學(xué)生的轉(zhuǎn)化和計(jì)算能力,屬于中檔題.14、-5【解析】作可行域,則直線z=x+3y過點(diǎn)A(1,-2)取最小值-5點(diǎn)睛:線性規(guī)劃的實(shí)質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對(duì)應(yīng)的直線時(shí),要注意與約束條件中的直線的斜率進(jìn)行比較,避免出錯(cuò);三,一般情況下,目標(biāo)函數(shù)的最大或最小值會(huì)在可行域的端點(diǎn)或邊界上取得.15、【解析】試題分析:考查古典概型的計(jì)算公式及分析問題解決問題的能力.從個(gè)元素中選個(gè)的所有可能有種,其中連續(xù)有共種,故由古典概型的計(jì)算公式可知恰好為連續(xù)天的概率是.考點(diǎn):古典概型的計(jì)算公式及運(yùn)用.16、【解析】分析:利用二項(xiàng)式逆定理即可.詳解:(展開式實(shí)部)(展開式實(shí)部).故答案為:.點(diǎn)睛:本題考查二項(xiàng)式定理的逆應(yīng)用,考查推理論證能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)8;(2).【解析】

⑴觀察可知,展開式中各項(xiàng)系數(shù)的和為,即,解出得到的值⑵利用二次展開式中的第項(xiàng),即通項(xiàng)公式,將第一問的代入,并整理,令的次數(shù)為,解出,得到答案【詳解】(1)由題意,得,即=256,解得n=8.(2)該二項(xiàng)展開式中的第項(xiàng)為Tr+1=,令=0,得r=2,此時(shí),常數(shù)項(xiàng)為=28.【點(diǎn)睛】本題主要考的是利用賦值法解決展開式的系數(shù)和問題,考查了利用二次展開式的通項(xiàng)公式解決二次展開式的特定項(xiàng)問題。18、(1);(2)180;(3).【解析】分析:(1)根據(jù)頻率分布直方圖的矩形面積之和為1求出x的值;(2)根據(jù)上學(xué)時(shí)間不少于1小時(shí)的頻率估計(jì)住校人數(shù);(3)根據(jù)二項(xiàng)分布的概率計(jì)算公式得出分布列,再計(jì)算數(shù)學(xué)期望.詳解:(1)由直方圖可得,∴.(2)新生上學(xué)所需時(shí)間不少于1小時(shí)的頻率為:,,∴估計(jì)1200名新生中有180名學(xué)生可以申請(qǐng)住.(3)的可能取值為,有直方圖可知,每位學(xué)生上學(xué)所需時(shí)間少于40分鐘的概率為,,,,,,則的分布列為01234的數(shù)學(xué)期望.點(diǎn)睛:本題考查了頻率分布直方圖,離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,屬于中檔題.19、(1)詳見解析;(2).【解析】

(1)將代入,可得等價(jià)于,即,令,求出,可得的最小值,可得證;(2)分,三種情況討論,分別對(duì)求導(dǎo),其中又分①若②③三種情況,利用函數(shù)的零點(diǎn)存在定理可得a的取值范圍.【詳解】解:(1)當(dāng)時(shí),等價(jià)于,即;設(shè)函數(shù),則,當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞減,在單調(diào)遞增.故為的最小值,而,故,即.(2),設(shè)函數(shù),則;(i)當(dāng)時(shí),,在上單調(diào)遞增,又,取b滿足且,則,故在上有唯一一個(gè)零點(diǎn),且當(dāng)時(shí),,時(shí),,由于,所以是的唯一極值點(diǎn);(ii)當(dāng)時(shí),在上單調(diào)遞增,無極值點(diǎn);(iii)當(dāng)時(shí),若時(shí),;若時(shí),.所以在上單調(diào)遞減,在單調(diào)遞增.故為的最小值,①若時(shí),由于,故只有一個(gè)零點(diǎn),所以時(shí),因此在上單調(diào)遞增,故不存在極值;②若時(shí),由于,即,所以,因此在上單調(diào)遞增,故不存在極值;③若時(shí),,即.又,且,而由(1)知,所以,取c滿足,則故在有唯一一個(gè)零點(diǎn),在有唯一一個(gè)零點(diǎn);且當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),由于,故在處取得極小值,在處取得極大值,即在上有兩個(gè)極值點(diǎn).綜上,只有一個(gè)極值點(diǎn)時(shí),的取值范圍是【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及利用導(dǎo)數(shù)研究函數(shù)的極值,及函數(shù)的零點(diǎn)存在定理,注意分類討論思想的運(yùn)用.20、(1);(2).【解析】分析:(Ⅰ)由已知及正弦定理可得,sinCsinB=sinBcosC,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求tanC=,即可得解C的值;(Ⅱ)由(Ⅰ)利用余弦定理可求a2+b2﹣c2=ab,又a2﹣c2=2b2,可得a=3b,利用三角形面積公式即可解得b的值.詳解:1由已知及正弦定理可得,,,,2

由1可得,,,又,,由題意可知,,,可得:

點(diǎn)睛:本題主要考查正弦定理及余弦定理的應(yīng)用以及三角形面積公式,屬于難題.在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡捷一般來說,當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.21、(1)見詳解;(2)或.【解析】

(1)先求的導(dǎo)數(shù),再根據(jù)的范圍分情況討論函數(shù)單調(diào)性;(2)根據(jù)的各種范圍,利用函數(shù)單調(diào)性進(jìn)行最大值和最小值的判斷,最終得出,的值.【詳解】(1)對(duì)求導(dǎo)得.所以有當(dāng)時(shí),區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;當(dāng)時(shí),區(qū)間上單調(diào)遞增;當(dāng)時(shí),區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.(2)若在區(qū)間有最大值1和最小值-1,所以若,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增;此時(shí)在區(qū)間上單調(diào)遞增,所以,代入解得,,與矛盾,所以不成立.若,區(qū)間上單調(diào)遞增;在區(qū)間.所以,代入解得.若,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.即在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為而,故所以區(qū)間上最大值為.即相減得,即,又因?yàn)椋詿o解.若,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.即在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,所以區(qū)間上最小值為而,故所以區(qū)間上最大值為.即相減得,解得,又因?yàn)?,所以無解.若,區(qū)間上單調(diào)遞增,區(qū)間上單調(diào)遞減,區(qū)間上單調(diào)遞增.所以有區(qū)間上單調(diào)遞減,所以區(qū)間上最大值為,最小值為即解得.綜上得或.【點(diǎn)睛】這是一道常規(guī)的函數(shù)導(dǎo)數(shù)不等式和綜合題,題目難度比往年降低了不少.考查的函數(shù)單調(diào)性,最大值最小值這種基本概念的計(jì)算.思考量不大,由計(jì)算量補(bǔ)充.22、(1)見解析;(2)【解析】

(1)求出f(x)的定義域,求導(dǎo)數(shù)f′(x),得其極值點(diǎn),按照極值點(diǎn)a在[1,e2]的左側(cè)、內(nèi)部、右側(cè)三種情況進(jìn)行討論,可得其最小值;(2)存在x1∈[e,e2],使得對(duì)任意的x2∈[﹣2,0],f(x1)<g(x2)恒成立,即f(x)min<g(x)min,由(1)知f(x)在[e,e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論