2023山東濟南初中數(shù)學考點歸納_第1頁
2023山東濟南初中數(shù)學考點歸納_第2頁
2023山東濟南初中數(shù)學考點歸納_第3頁
2023山東濟南初中數(shù)學考點歸納_第4頁
2023山東濟南初中數(shù)學考點歸納_第5頁
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

第2023山東濟南初中數(shù)學考點歸納

山東濟南初中數(shù)學考點歸納

1.數(shù)軸

(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.

數(shù)軸的三要素:原點,單位長度,正方向。

(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù).)

(3)用數(shù)軸比較大小:一般來說,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。

重點知識:

初中數(shù)學第一課,認識正數(shù)與負數(shù)!新初一的來~

2.相反數(shù)

(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).

(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。

(3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正。

(4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。

3.絕對值

1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。

①互為相反數(shù)的兩個數(shù)絕對值相等;

②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).

③有理數(shù)的絕對值都是非負數(shù).

2.如果用字母a表示有理數(shù),則數(shù)a絕對值要由字母a本身的取值來確定:

①當a是正有理數(shù)時,a的絕對值是它本身a;

②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;

③當a是零時,a的絕對值是零.

即|a|={a(a0)0(a=0)﹣a(a0)

重點知識:

初中數(shù)學第二課,有理數(shù)的相關知識!新初一的來~

4.有理數(shù)大小比較

1.有理數(shù)的大小比較

比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質(zhì)比較異號兩數(shù)及0的大小,利用絕對值比較兩個負數(shù)的大小。

2.有理數(shù)大小比較的法則:

①正數(shù)都大于0;

②負數(shù)都小于0;

③正數(shù)大于一切負數(shù);

④兩個負數(shù),絕對值大的其值反而小。

規(guī)律方法·有理數(shù)大小比較的三種方法:

(1)法則比較:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).兩個負數(shù)比較大小,絕對值大的反而小.

(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).

(3)作差比較:

若a﹣b0,則a

若a﹣b0,則ap=

若a﹣b=0,則a=b.

5.有理數(shù)的減法

有理數(shù)減法法則

減去一個數(shù),等于加上這個數(shù)的相反數(shù)。即:a﹣b=a+(﹣b)

方法指引:

①在進行減法運算時,首先弄清減數(shù)的符號;

②將有理數(shù)轉(zhuǎn)化為加法時,要同時改變兩個符號:一是運算符號(減號變加號);二是減數(shù)的性質(zhì)符號(減數(shù)變相反數(shù));

注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律。

減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應依法則進行計算。

6.有理數(shù)的乘法

(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

(2)任何數(shù)同零相乘,都得0。

(3)多個有理數(shù)相乘的法則:

①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.

②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。

(4)方法指引

①運用乘法法則,先確定符號,再把絕對值相乘.

②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡單.

7.有理數(shù)的混合運算

1.有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算。

2.進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化。

有理數(shù)混合運算的四種運算技巧:

(1)轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分數(shù)進行約分計算.

(2)湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解.

(3)分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算.

(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.

8.科學記數(shù)法—表示較大的數(shù)

1.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學記數(shù)法。(科學記數(shù)法形式:a×10n,其中1≤a10,n為正整數(shù))

2.規(guī)律方法總結

①科學記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關鍵,由于10的指數(shù)比原來的整數(shù)位數(shù)少1;按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n。

②記數(shù)法要求是大于10的數(shù)可用科學記數(shù)法表示,實質(zhì)上絕對值大于10的負數(shù)同樣可用此法表示,只是前面多一個負號.

重點知識:

初中數(shù)學第八課:科學計數(shù)法,新初一的來~

9.代數(shù)式求值

(1)代數(shù)式的值:用數(shù)值代替代數(shù)式里的字母,計算后所得的結果叫做代數(shù)式的值。

(2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值。

題型簡單總結以下三種:

①已知條件不化簡,所給代數(shù)式化簡;

②已知條件化簡,所給代數(shù)式不化簡;

③已知條件和所給代數(shù)式都要化簡.

10.規(guī)律型:圖形的變化類

首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解。探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題。

初中數(shù)學考點歸納

銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

正弦(sin)等于對邊比斜邊;sinA=a/c

余弦(cos)等于鄰邊比斜邊;cosA=b/c

正切(tan)等于對邊比鄰邊;tanA=a/b

余切(cot)等于鄰邊比對邊;cotA=b/a

正割(sec)等于斜邊比鄰邊;secA=c/b

余割(csc)等于斜邊比對邊。cscA=c/a

互余角的三角函數(shù)間的關系

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關系:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數(shù)關系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

初中數(shù)學考點

倒數(shù)關系

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數(shù)關系六角形記憶法

構造以上弦、中切、下割;左正、右余、中間1的正六邊形為模型。

倒數(shù)關系

對角線上兩個函數(shù)互為倒

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論