重慶市南川三校聯(lián)盟2022-2023學年數(shù)學高二下期末綜合測試模擬試題含解析_第1頁
重慶市南川三校聯(lián)盟2022-2023學年數(shù)學高二下期末綜合測試模擬試題含解析_第2頁
重慶市南川三校聯(lián)盟2022-2023學年數(shù)學高二下期末綜合測試模擬試題含解析_第3頁
重慶市南川三校聯(lián)盟2022-2023學年數(shù)學高二下期末綜合測試模擬試題含解析_第4頁
重慶市南川三校聯(lián)盟2022-2023學年數(shù)學高二下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023高二下數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某小區(qū)的6個停車位連成一排,現(xiàn)有3輛車隨機停放在車位上,則任何兩輛車都不相鄰的停放方式有()種.A.24 B.72 C.120 D.1442.某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:使用智能手機不使用智能手機合計學習成績優(yōu)秀4812學習成績不優(yōu)秀16218合計201030附表:經(jīng)計算,則下列選項正確的是A.有的把握認為使用智能手機對學習有影響B(tài).有的把握認為使用智能手機對學習無影響C.有的把握認為使用智能手機對學習有影響D.有的把握認為使用智能手機對學習無影響3.設曲線在點處的切線方程為,則()A.1 B.2 C.3 D.44.若滿足約束條件則的最大值為()A.5 B. C.4 D.35.已知點為雙曲線上一點,則它的離心率為()A. B. C. D.6.用秦九韶算法求次多項式,當時,求需要算乘方、乘法、加法的次數(shù)分別為()A. B. C. D.7.連續(xù)兩次拋擲一枚質(zhì)地均勻的骰子,在已知兩次的點數(shù)均為偶數(shù)的條件下,兩次的點數(shù)之和不大于8的概率為()A. B. C. D.8.已知關于的實系數(shù)一元二次方程的一個根在復平面上對應點是,則這個方程可以是()A. B.C. D.9.對于平面上點和曲線,任取上一點,若線段的長度存在最小值,則稱該值為點到曲線的距離,記作,若曲線是邊長為的等邊三角形,則點集所表示的圖形的面積為()A. B. C. D.10.從1,2,3,4,5中任取2個不同的數(shù),事件“取到的2個數(shù)之和為偶數(shù)”,事件“取到的2個數(shù)均為偶數(shù)”,則()A. B. C. D.11.在橢圓中,分別是其左右焦點,若,則該橢圓離心率的取值范圍是()A. B. C. D.12.把邊長為的正方形沿對角線折起,使得平面⊥平面,形成三棱錐的正視圖與俯視圖如圖所示,則側(cè)視圖的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某林場有樹苗3000棵,其中松樹苗400棵.為調(diào)查樹苗的生長情況,采用分層抽樣的方法抽取一個容量為150的樣本,則樣本中松樹苗的棵數(shù)為.14.數(shù)列共有13項,,,且,,滿足這種條件不同的數(shù)列個數(shù)為______15.設集合,,則_______.16.已知向量,,若向量、的夾角為鈍角,則實數(shù)的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調(diào)查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:年齡段20~2930~3940~4950~60頻數(shù)1218155經(jīng)常使用共享單車61251(1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異?年齡低于40歲年齡不低于40歲總計經(jīng)常使用共享單車不經(jīng)常使用共享單車總計附:,.0.250.150.100.0500.0250.0101.3232.0722.7063.8415.0246.635(2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.18.(12分)如圖,在三棱柱中,,,點在平而內(nèi)的射影為(1)證明:四邊形為矩形;(2)分別為與的中點,點在線段上,已知平面,求的值.(3)求平面與平面所成銳二面角的余弦值19.(12分)某公司計劃購買2臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:以這100臺機器更換的易損零件數(shù)的頻率代替1臺機器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機器的同時購買的易損零件數(shù).(I)求的分布列;(II)若要求,確定的最小值;(III)以購買易損零件所需費用的期望值為決策依據(jù),在與之中選其一,應選用哪個?20.(12分)某同學在研究性學習中,收集到某制藥廠今年前5個月甲膠囊生產(chǎn)產(chǎn)量(單位:萬盒)的數(shù)據(jù)如下表所示:月份x12345y(萬盒)44566(1)該同學為了求出關于的線性回歸方程,根據(jù)表中數(shù)據(jù)已經(jīng)正確計算出=0.6,試求出的值,并估計該廠6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù);(2)若某藥店現(xiàn)有該制藥廠今年二月份生產(chǎn)的甲膠囊4盒和三月份生產(chǎn)的甲膠囊5盒,小紅同學從中隨機購買了3盒甲膠囊,后經(jīng)了解發(fā)現(xiàn)該制藥廠今年二月份生產(chǎn)的所有甲膠囊均存在質(zhì)量問題,記小紅同學所購買的3盒甲膠囊中存在質(zhì)量問題的盒數(shù)為ξ,求ξ的分布列和數(shù)學期望.21.(12分)某種兒童型防蚊液儲存在一個容器中,該容器由兩個半球和一個圓柱組成,(其中上半球是容器的蓋子,防蚊液儲存在下半球及圓柱中),容器軸截面如圖所示,兩頭是半圓形,中間區(qū)域是矩形,其外周長為毫米.防蚊液所占的體積為圓柱體積和一個半球體積之和.假設的長為毫米.(注:,其中為球半徑,為圓柱底面積,為圓柱的高)(1)求容器中防蚊液的體積關于的函數(shù)關系式;(2)如何設計與的長度,使得最大?22.(10分)如圖,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=t,建立如圖所示的空間直角坐標系O—xyz.(1)若t=1,求異面直線AC1與A1B所成角的大小;(2)若t=5,求直線AC1與平面A1BD所成角的正弦值;(3)若二面角A1—BD—C的大小為120°,求實數(shù)t的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:根據(jù)題意,首先排好三輛車,在三輛車中間插入兩個空位使三輛車任何兩輛車都不相鄰,最后一個空車位利用插空法即可.詳解:根據(jù)題意,首先排好三輛車,共種,在三輛車中間插入兩個空位使三輛車任何兩輛車都不相鄰,最后把剩下的空車位插入空位中,則有種,由分步計數(shù)原理,可得共有種不同的停車方法.點睛:本題考查排列、組合的綜合應用,注意空位是相同的.2、A【解析】

根據(jù)附表可得,所以有的把握認為使用智能手機對學習有影響,選A3、D【解析】

利用導數(shù)的幾何意義得直線的斜率,列出a的方程即可求解【詳解】因為,且在點處的切線的斜率為3,所以,即.故選:D【點睛】本題考查導數(shù)的幾何意義,考查運算求解能力,是基礎題4、A【解析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,代入目標函數(shù)得答案.【詳解】由約束條件作出可行域如圖,

聯(lián)立,可得,

化目標函數(shù)為,

由圖可知,當直線過A時,直線在y軸上的截距最大,z有最大值為.

故選:A.【點睛】本題考查簡單的線性規(guī)劃,考查數(shù)形結合的解題思想方法,是中檔題.5、B【解析】

將點P帶入求出a的值,再利用公式計算離心率?!驹斀狻繉ⅫcP帶入得,解得所以【點睛】本題考查雙曲線的離心率,屬于基礎題。6、D【解析】求多項式的值時,首先計算最內(nèi)層括號內(nèi)一次多項式的值,即然后由內(nèi)向外逐層計算一次多項式的值,即..….這樣,求n次多項式f(x)的值就轉(zhuǎn)化為求n個一次多項式的值.∴對于一個n次多項式,至多做n次乘法和n次加法故選D.7、D【解析】

求出兩次點均為偶數(shù)的所有基本事件的個數(shù),再求出在兩次均為偶數(shù)而且和不大于8的基本事件的個數(shù)后可得概率.【詳解】記,,因為,,所以.故選:D.【點睛】本題考查條件概率,本題解題關鍵是求出兩次的點數(shù)均為偶數(shù)的條件下,兩次的點數(shù)之和不大于8所含有的基本事件的個數(shù).8、A【解析】

先由題意得到方程的兩復數(shù)根為,(為虛數(shù)單位),求出,,根據(jù)選項,即可得出結果.【詳解】因為方程的根在復平面內(nèi)對應的點是,可設根為:,(為虛數(shù)單位),所以方程必有另一根,又,,根據(jù)選項可得,該方程為.故選A【點睛】本題主要考查復數(shù)的方程,熟記復數(shù)的運算法則即可,屬于??碱}型.9、D【解析】

根據(jù)可畫出滿足題意的點所構成的平面區(qū)域;分別求解區(qū)域各個構成部分的面積,加和得到結果.【詳解】由定義可知,若曲線為邊長為的等邊三角形,則滿足題意的點構成如下圖所示的陰影區(qū)域其中,,,,,,又又陰影區(qū)域面積為:即點集所表示的圖形的面積為:本題正確選項:【點睛】本題考查新定義運算的問題,關鍵是能夠根據(jù)定義,找到距離等邊三角形三邊和頂點的最小距離小于等于的點所構成的區(qū)域,易錯點是忽略三角形內(nèi)部的點,造成區(qū)域缺失的情況.10、B【解析】兩個數(shù)之和為偶數(shù),則這兩個數(shù)可能都是偶數(shù)或都是奇數(shù),所以。而,所以,故選B11、B【解析】解:根據(jù)橢圓定義|PF1|+|PF2|=2a,將設|PF1|=2|PF2|代入得|PF2|=根據(jù)橢圓的幾何性質(zhì),|PF2|≥a-c,故≥a-c,即a≤3ce≥,又e<1,故該橢圓離心率的取值范圍故選B.12、C【解析】取BD的中點E,連結CE,AE,∵平面ABD⊥平面CBD,∴CE⊥AE,∴三角形直角△CEA是三棱錐的側(cè)視圖,∵BD=,∴CE=AE=,∴△CEA的面積S=××=,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】試題分析:由分層抽樣的方法知樣本中松樹苗的棵數(shù)應為150的,所以樣本中松樹苗的棵數(shù)應為.考點:分層抽樣.14、495【解析】

根據(jù)題意,先確定數(shù)列中的個數(shù),再利用組合知識,即可得到結論.【詳解】,或,,設上式中有個,則有個,,解得:,這樣的數(shù)列個數(shù)有.故答案為:495【點睛】本題以數(shù)列遞推關系為背景,本質(zhì)考查組合知識的運用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意確定數(shù)列中的個數(shù)是關鍵.15、【解析】

解出集合中的方程,然后直接求【詳解】解:由已知,故答案為:【點睛】本題考查集合的交集運算,是基礎題.16、【解析】

根據(jù)向量夾角為鈍角,可知且,解不等式可求得結果.【詳解】由題意可知:且解得:且,即本題正確結果:【點睛】本題考查向量夾角的相關問題的求解,易錯點是忽略夾角為的情況,造成出現(xiàn)增根.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)根據(jù)題意填寫列聯(lián)表,由表中數(shù)據(jù)計算觀測值,對照臨界值得出結論;(2)用分層抽樣法選出6人,利用列舉法求出基本事件數(shù),再計算所求的概率值.【詳解】(1)根據(jù)題意填寫2×2列聯(lián)表如下:年齡低于40歲年齡不低于40歲總計經(jīng)常使用共享單車18624不經(jīng)常使用共享單車121436總計302050由表中數(shù)據(jù),計算所以沒有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異.(2)用分層抽樣法選出6人,其中20~29歲的有2人,記為A、B,30~39歲的有4人,記為c、d、e、f,再從這6人中隨機抽取2人,基本事件為:AB、Ac、Ad、Ae、Af、Be、Bd、Be、Bf、cd、ce、cf、de、df、ef共15種不同取法;則抽取的這2人中恰好有1人年齡在30~39歲的基本事件為:Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共8種不同取法;故所求的概率為.【點睛】本題考查了學生運用表格求相應統(tǒng)計數(shù)據(jù)的能力,會運用獨立性檢驗處理實際問題中的關聯(lián)性問題,考查了分層抽樣結果,以及求簡單隨機事件的概率,可以列舉法處理,屬于中檔題.18、(1)詳見解析(2)(3)【解析】

(1)根據(jù)投影分析線段長度關系,由此得到長度關系,由此去證明四邊形為矩形;(2)通過取中點,作出輔助線,利用線面平行確定點位置,從而完成的計算;(3)建立合適空間直角坐標系,利用向量法求解銳二面角的余弦值.【詳解】(1)證明:平面,在平面,在與中,又,,四邊形為矩形;(2)取的中點,連結交于,分別為的中點,,,又為的中點,,四邊形為平行四邊形,即,平面,;(3)如圖,以為坐標原點,過分別與平行的直線為軸,軸,為軸,建立如圖所示空間直角坐標系,,平面的法向量,,設為平面的法向量得,平面與平面所成銳二面角的余弦值為【點睛】本題考查立體幾何的綜合應用,難度一般.利用向量方法求解二面角的余弦值時,要注意一個問題:有時候求解出的余弦值是負值,但實際結果卻是正值,這里其實我們需要回原圖中去觀察一下兩個面所成的二面角是銳角還是鈍角,然后給出判斷即可.19、(I)1617182212122(II)2(III)【解析】試題分析:(Ⅰ)由已知得X的可能取值為16,17,18,2,21,21,22,分別求出相應的概率,由此能求出X的分布列.(Ⅱ)由X的分布列求出P(X≤18)=,P(X≤2)=.由此能確定滿足P(X≤n)≥1.5中n的最小值.(Ⅲ)由X的分布列得P(X≤2)=.求出買2個所需費用期望EX1和買21個所需費用期望EX2,由此能求出買2個更合適試題解析:(Ⅰ)由柱狀圖并以頻率代替概率可得,一臺機器在三年內(nèi)需更換的易損零件數(shù)為8,9,11,11的概率分別為1.2,1.4,1.2,1.2,從而;;;;;;.所以的分布列為1617182212122(Ⅱ)由(Ⅰ)知,,故的最小值為2.(Ⅲ)記表示2臺機器在購買易損零件上所需的費用(單位:元).當時,.當時,.可知當時所需費用的期望值小于時所需費用的期望值,故應選.考點:離散型隨機變量及其分布列20、(1),6.1(2)見解析【解析】試題分析:(1)由線性回歸方程過點(,),可得,再求x=6時對應函數(shù)值即為6月份生產(chǎn)的甲膠囊產(chǎn)量數(shù)(2)先確定隨機變量取法:ξ=0,1,2,3,再利用組合數(shù)求對應概率,列表可得分布列,最后根據(jù)公式求數(shù)學期望試題解析:解:(1)==3,(4+4+5+6+6)=5,因線性回歸方程=x+過點(,),∴=﹣=5﹣0.6×3=3.2,∴6月份的生產(chǎn)甲膠囊的產(chǎn)量數(shù):=0.6×6+3.2=6.1.(2)ξ=0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,其分布列為ξ0123P所以Eξ==.21、(1),(2)當為毫米,為毫米時,防蚊液的體積有最大值.【解析】

(1)由矩形其外周長為毫米,設

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論