2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第1頁(yè)
2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第2頁(yè)
2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第3頁(yè)
2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第4頁(yè)
2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022屆廣西貴港市港北區(qū)中考試題猜想數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.對(duì)于反比例函數(shù)y=﹣2xA.圖象分布在第二、四象限B.當(dāng)x>0時(shí),y隨x的增大而增大C.圖象經(jīng)過(guò)點(diǎn)(1,﹣2)D.若點(diǎn)A(x1,y1),B(x2,y2)都在圖象上,且x1<x2,則y1<y22.已知二次函數(shù)的圖象如圖所示,若,是這個(gè)函數(shù)圖象上的三點(diǎn),則的大小關(guān)系是()A. B. C. D.3.已知一個(gè)多邊形的內(nèi)角和是1080°,則這個(gè)多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形4.若代數(shù)式的值為零,則實(shí)數(shù)x的值為()A.x=0 B.x≠0 C.x=3 D.x≠35.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中點(diǎn),G是△ABC的重心,如果以點(diǎn)D為圓心DG為半徑的圓和以點(diǎn)C為圓心半徑為r的圓相交,那么r的取值范圍是()A.r<5 B.r>5 C.r<10 D.5<r<106.據(jù)史料記載,雎水太平橋建于清嘉慶年間,已有200余年歷史.橋身為一巨型單孔圓弧,既沒有用鋼筋,也沒有用水泥,全部由石塊砌成,猶如一道彩虹橫臥河面上,橋拱半徑OC為13m,河面寬AB為24m,則橋高CD為()A.15m B.17m C.18m D.20m7.如圖,二次函數(shù)y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,對(duì)稱軸為直線x=1,且OA=OC.則下列結(jié)論:①abc>0;②9a+3b+c>0;③c>﹣1;④關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為﹣;⑤拋物線上有兩點(diǎn)P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結(jié)論有()A.1個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8.若ab<0,則正比例函數(shù)y=ax與反比例函數(shù)y=在同一坐標(biāo)系中的大致圖象可能是()A. B. C. D.9.下列運(yùn)算正確的是()A. B. C. D.10.半徑為3的圓中,一條弦長(zhǎng)為4,則圓心到這條弦的距離是()A.3 B.4 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如果方程x2-4x+3=0的兩個(gè)根分別是Rt△ABC的兩條邊,△ABC最小的角為A,那么tanA的值為_______.12.如圖,中,∠,,的面積為,為邊上一動(dòng)點(diǎn)(不與,重合),將和分別沿直線,翻折得到和,那么△的面積的最小值為____.13.已知圓錐的底面半徑為,母線長(zhǎng)為,則它的側(cè)面展開圖的面積等于__________.14.如圖,在Rt△ABC中,∠ACB=90°,D、E、F分別是AB、BC、CA的中點(diǎn),若CD=3cm,則EF=________cm.15.某書店把一本新書按標(biāo)價(jià)的九折出售,仍可獲利20%,若該書的進(jìn)價(jià)為21元,則標(biāo)價(jià)為___________元.16.如圖,菱形ABCD和菱形CEFG中,∠ABC=60°,點(diǎn)B,C,E在同一條直線上,點(diǎn)D在CG上,BC=1,CE=3,H是AF的中點(diǎn),則CH的長(zhǎng)為________.17.已知關(guān)于x方程x2﹣3x+a=0有一個(gè)根為1,則方程的另一個(gè)根為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在建筑物M的頂端A處測(cè)得大樓N頂端B點(diǎn)的仰角α=45°,同時(shí)測(cè)得大樓底端A點(diǎn)的俯角為β=30°.已知建筑物M的高CD=20米,求樓高AB為多少米?(≈1.732,結(jié)果精確到0.1米)19.(5分)從化市某中學(xué)初三(1)班數(shù)學(xué)興趣小組為了解全校800名初三學(xué)生的“初中畢業(yè)選擇升學(xué)和就業(yè)”情況,特對(duì)本班50名同學(xué)們進(jìn)行調(diào)查,根據(jù)全班同學(xué)提出的3個(gè)主要觀點(diǎn):A高中,B中技,C就業(yè),進(jìn)行了調(diào)查(要求每位同學(xué)只選自己最認(rèn)可的一項(xiàng)觀點(diǎn));并制成了扇形統(tǒng)計(jì)圖(如圖).請(qǐng)回答以下問題:(1)該班學(xué)生選擇觀點(diǎn)的人數(shù)最多,共有人,在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是度.(2)利用樣本估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù).(3)已知該班只有2位女同學(xué)選擇“就業(yè)”觀點(diǎn),如果班主任從該觀點(diǎn)中,隨機(jī)選取2位同學(xué)進(jìn)行調(diào)查,那么恰好選到這2位女同學(xué)的概率是多少?(用樹形圖或列表法分析解答).20.(8分)某商場(chǎng)將進(jìn)價(jià)40元一個(gè)的某種商品按50元一個(gè)售出時(shí),每月能賣出500個(gè).商場(chǎng)想了兩個(gè)方案來(lái)增加利潤(rùn):方案一:提高價(jià)格,但這種商品每個(gè)售價(jià)漲價(jià)1元,銷售量就減少10個(gè);方案二:售價(jià)不變,但發(fā)資料做廣告.已知當(dāng)這種商品每月的廣告費(fèi)用為m(千元)時(shí),每月銷售量將是原銷售量的p倍,且p=.試通過(guò)計(jì)算,請(qǐng)你判斷商場(chǎng)為賺得更大的利潤(rùn)應(yīng)選擇哪種方案?請(qǐng)說(shuō)明你判斷的理由!21.(10分)問題探究(1)如圖①,在矩形ABCD中,AB=3,BC=4,如果BC邊上存在點(diǎn)P,使△APD為等腰三角形,那么請(qǐng)畫出滿足條件的一個(gè)等腰三角形△APD,并求出此時(shí)BP的長(zhǎng);(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為邊AB、AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng);問題解決(3)有一山莊,它的平面圖為如圖③的五邊形ABCDE,山莊保衛(wèi)人員想在線段CD上選一點(diǎn)M安裝監(jiān)控裝置,用來(lái)監(jiān)視邊AB,現(xiàn)只要使∠AMB大約為60°,就可以讓監(jiān)控裝置的效果達(dá)到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,問在線段CD上是否存在點(diǎn)M,使∠AMB=60°?若存在,請(qǐng)求出符合條件的DM的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.22.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.23.(12分)已知AC=DC,AC⊥DC,直線MN經(jīng)過(guò)點(diǎn)A,作DB⊥MN,垂足為B,連接CB.(1)直接寫出∠D與∠MAC之間的數(shù)量關(guān)系;(2)①如圖1,猜想AB,BD與BC之間的數(shù)量關(guān)系,并說(shuō)明理由;②如圖2,直接寫出AB,BD與BC之間的數(shù)量關(guān)系;(3)在MN繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,當(dāng)∠BCD=30°,BD=時(shí),直接寫出BC的值.24.(14分)在如圖的正方形網(wǎng)格中,每一個(gè)小正方形的邊長(zhǎng)均為1.格點(diǎn)三角形ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A、C的坐標(biāo)分別是(﹣2,0),(﹣3,3).(1)請(qǐng)?jiān)趫D中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系,寫出點(diǎn)B的坐標(biāo);(2)把△ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△A1B1C1,畫出△A1B1C1,寫出點(diǎn)B1的坐標(biāo);(3)以坐標(biāo)原點(diǎn)O為位似中心,相似比為2,把△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側(cè);請(qǐng)?jiān)趚軸上求作一點(diǎn)P,使△PBB1的周長(zhǎng)最小,并寫出點(diǎn)P的坐標(biāo).

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)反比例函數(shù)圖象的性質(zhì)對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.k=?2<0,∴它的圖象在第二、四象限,故本選項(xiàng)正確;B.k=?2<0,當(dāng)x>0時(shí),y隨x的增大而增大,故本選項(xiàng)正確;C.∵-2D.若點(diǎn)A(x1,y1),B(x2,y2)都在圖象上,,若x1<0<x2,則y2<y1,故本選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)的性質(zhì)是解題的關(guān)鍵.2、A【解析】

先求出二次函數(shù)的對(duì)稱軸,結(jié)合二次函數(shù)的增減性即可判斷.【詳解】解:二次函數(shù)的對(duì)稱軸為直線,∵拋物線開口向下,∴當(dāng)時(shí),y隨x增大而增大,∵,∴故答案為:A.【點(diǎn)睛】本題考查了根據(jù)自變量的大小,比較函數(shù)值的大小,解題的關(guān)鍵是熟悉二次函數(shù)的增減性.3、D【解析】

根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設(shè)所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點(diǎn)睛】本題考查根據(jù)多邊形的內(nèi)角和計(jì)算公式求多邊形的邊數(shù),解答時(shí)要會(huì)根據(jù)公式進(jìn)行正確運(yùn)算、變形和數(shù)據(jù)處理.4、A【解析】

根據(jù)分子為零,且分母不為零解答即可.【詳解】解:∵代數(shù)式的值為零,∴x=0,此時(shí)分母x-3≠0,符合題意.故選A.【點(diǎn)睛】本題考查了分式的值為零的條件.若分式的值為零,需同時(shí)具備兩個(gè)條件:①分子的值為0,②分母的值不為0,這兩個(gè)條件缺一不可.5、D【解析】延長(zhǎng)CD交⊙D于點(diǎn)E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中點(diǎn),∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C與⊙D相交,⊙C的半徑為r,∴,故選D.【點(diǎn)睛】本題考查了三角形的重心的性質(zhì)、直角三角形斜邊中線等于斜邊一半、兩圓相交等,根據(jù)知求出CG的長(zhǎng)是解題的關(guān)鍵.6、C【解析】連結(jié)OA,如圖所示:

∵CD⊥AB,

∴AD=BD=AB=12m.在Rt△OAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故選C.7、D【解析】

根據(jù)拋物線的圖象與系數(shù)的關(guān)系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點(diǎn)可知:c<0,由拋物線的對(duì)稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對(duì)稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當(dāng)x=﹣c時(shí),y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設(shè)關(guān)于x的方程ax1+bx+c=0(a≠0)有一個(gè)根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點(diǎn)分布在對(duì)稱軸的兩側(cè),∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對(duì)稱軸的距離小于x1到對(duì)稱軸的距離,∴y1>y1,故⑤正確.故選D.【點(diǎn)睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax1+bx+c系數(shù)符號(hào)由拋物線開口方向、對(duì)稱軸、拋物線與y軸的交點(diǎn)拋物線與x軸交點(diǎn)的個(gè)數(shù)確定.本題屬于中等題型.8、D【解析】

根據(jù)ab<0及正比例函數(shù)與反比例函數(shù)圖象的特點(diǎn),可以從a>0,b<0和a<0,b>0兩方面分類討論得出答案.【詳解】解:∵ab<0,∴分兩種情況:(1)當(dāng)a>0,b<0時(shí),正比例函數(shù)y=ax數(shù)的圖象過(guò)原點(diǎn)、第一、三象限,反比例函數(shù)圖象在第二、四象限,無(wú)此選項(xiàng);(2)當(dāng)a<0,b>0時(shí),正比例函數(shù)的圖象過(guò)原點(diǎn)、第二、四象限,反比例函數(shù)圖象在第一、三象限,選項(xiàng)D符合.故選D【點(diǎn)睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)和正比例函數(shù)的圖象性質(zhì),要掌握它們的性質(zhì)才能靈活解題.9、D【解析】

根據(jù)冪的乘方:底數(shù)不變,指數(shù)相乘.合并同類項(xiàng)即可解答.【詳解】解:A、B兩項(xiàng)不是同類項(xiàng),所以不能合并,故A、B錯(cuò)誤,C、D考查冪的乘方運(yùn)算,底數(shù)不變,指數(shù)相乘.,故D正確;【點(diǎn)睛】本題考查冪的乘方和合并同類項(xiàng),熟練掌握運(yùn)算法則是解題的關(guān)鍵.10、C【解析】如圖所示:過(guò)點(diǎn)O作OD⊥AB于點(diǎn)D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、或【解析】解方程x2-4x+3=0得,x1=1,x2=3,①當(dāng)3是直角邊時(shí),∵△ABC最小的角為A,∴tanA=;②當(dāng)3是斜邊時(shí),根據(jù)勾股定理,∠A的鄰邊=,∴tanA=;所以tanA的值為或.12、4.【解析】

過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,由折疊可得∠EAG=30°,而當(dāng)AD⊥BC時(shí),AD最短,依據(jù)BC=7,△ABC的面積為14,即可得到當(dāng)AD⊥BC時(shí),AD=4=AE=AF,進(jìn)而得到△AEF的面積最小值為:AF×EG=×4×2=4.【詳解】解:如圖,過(guò)E作EG⊥AF,交FA的延長(zhǎng)線于G,

由折疊可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,

∵∠BAC=75°,

∴∠EAF=150°,

∴∠EAG=30°,

∴EG=AE=AD,

當(dāng)AD⊥BC時(shí),AD最短,

∵BC=7,△ABC的面積為14,

∴當(dāng)AD⊥BC時(shí),,即:,∴.

∴△AEF的面積最小值為:

AF×EG=×4×2=4,故答案為:4.【點(diǎn)睛】本題主要考查了折疊問題,解題的關(guān)鍵是利用對(duì)應(yīng)邊和對(duì)應(yīng)角相等.13、【解析】解:它的側(cè)面展開圖的面積=?1π?4×6=14π(cm1).故答案為14πcm1.點(diǎn)睛:本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).14、3【解析】試題分析:根據(jù)點(diǎn)D為AB的中點(diǎn)可得:CD為直角三角形斜邊上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得AB=2CD=6,根據(jù)E、F分別為中點(diǎn)可得:EF為△ABC的中位線,根據(jù)中位線的性質(zhì)可得:EF=AB=3.考點(diǎn):(1)、直角三角形的性質(zhì);(2)、中位線的性質(zhì)15、28【解析】設(shè)標(biāo)價(jià)為x元,那么0.9x-21=21×20%,x=28.16、【解析】

連接AC、CF,GE,根據(jù)菱形性質(zhì)求出AC、CF,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根據(jù)直角三角形斜邊上的中線等于斜邊的一半解答即可.【詳解】解:如圖,連接AC、CF、GE,CF和GE相交于O點(diǎn)∵在菱形ABCD中,,BC=1,∴,AC=1,∴∵在菱形CEFG中,是它的對(duì)角線,∴,∴,∴∵==,∴在,又∵H是AF的中點(diǎn)∴.【點(diǎn)睛】本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質(zhì),菱形的性質(zhì),勾股定理,熟記各性質(zhì)并作輔助線構(gòu)造出直角三角形是解題的關(guān)鍵.17、1【解析】分析:設(shè)方程的另一個(gè)根為m,根據(jù)兩根之和等于-,即可得出關(guān)于m的一元一次方程,解之即可得出結(jié)論.詳解:設(shè)方程的另一個(gè)根為m,根據(jù)題意得:1+m=3,解得:m=1.故答案為1.點(diǎn)睛:本題考查了根與系數(shù)的關(guān)系,牢記兩根之和等于-是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、樓高AB為54.6米.【解析】

過(guò)點(diǎn)C作CE⊥AB于E,解直角三角形求出CE和CE的長(zhǎng),進(jìn)而求出AB的長(zhǎng).【詳解】解:如圖,過(guò)點(diǎn)C作CE⊥AB于E,則AE=CD=20,∵CE====20,BE=CEtanα=20×tan45°=20×1=20,∴AB=AE+EB=20+20≈20×2.732≈54.6(米),答:樓高AB為54.6米.【點(diǎn)睛】此題主要考查了仰角與俯角的應(yīng)用,根據(jù)已知構(gòu)造直角三角形利用銳角三角函數(shù)關(guān)系得出是解題關(guān)鍵.19、(4)A高中觀點(diǎn).4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數(shù)乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”觀點(diǎn)的人數(shù),用460°乘以選擇“A高中”觀點(diǎn)的百分比即可得到選擇“A高中”的觀點(diǎn)所在扇形區(qū)域的圓心角的度數(shù);(4)用全校初三年級(jí)學(xué)生數(shù)乘以選擇“B中技”觀點(diǎn)的百分比即可估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù);(4)先計(jì)算出該班選擇“就業(yè)”觀點(diǎn)的人數(shù)為4人,則可判斷有4位女同學(xué)和4位男生選擇“就業(yè)”觀點(diǎn),再列表展示44種等可能的結(jié)果數(shù),找出出現(xiàn)4女的結(jié)果數(shù),然后根據(jù)概率公式求解.試題解析:(4)該班學(xué)生選擇A高中觀點(diǎn)的人數(shù)最多,共有60%×50=4(人),在扇形統(tǒng)計(jì)圖中,該觀點(diǎn)所在扇形區(qū)域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計(jì)該校初三學(xué)生選擇“中技”觀點(diǎn)的人數(shù)約是456人;(4)該班選擇“就業(yè)”觀點(diǎn)的人數(shù)=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學(xué)和4位男生選擇“就業(yè)”觀點(diǎn),列表如下:共有44種等可能的結(jié)果數(shù),其中出現(xiàn)4女的情況共有4種.所以恰好選到4位女同學(xué)的概率=212考點(diǎn):4.列表法與樹狀圖法;4.用樣本估計(jì)總體;4.扇形統(tǒng)計(jì)圖.20、方案二能獲得更大的利潤(rùn);理由見解析【解析】

方案一:由利潤(rùn)=(實(shí)際售價(jià)-進(jìn)價(jià))×銷售量,列出函數(shù)關(guān)系式,再用配方法求最大利潤(rùn);方案二:由利潤(rùn)=(售價(jià)-進(jìn)價(jià))×500p-廣告費(fèi)用,列出函數(shù)關(guān)系式,再用配方法求最大利潤(rùn).【詳解】解:設(shè)漲價(jià)x元,利潤(rùn)為y元,則方案一:漲價(jià)x元時(shí),該商品每一件利潤(rùn)為:50+x?40,銷售量為:500?10x,∴,∵當(dāng)x=20時(shí),y最大=9000,∴方案一的最大利潤(rùn)為9000元;方案二:該商品售價(jià)利潤(rùn)為=(50?40)×500p,廣告費(fèi)用為:1000m元,∴,∴方案二的最大利潤(rùn)為10125元;∴選擇方案二能獲得更大的利潤(rùn).【點(diǎn)睛】本題考查二次函數(shù)的實(shí)際應(yīng)用,根據(jù)題意,列出函數(shù)關(guān)系式,配方求出最大值.21、(1)1;2-;;(1)4+;(4)(200-25-40)米.【解析】

(1)由于△PAD是等腰三角形,底邊不定,需三種情況討論,運(yùn)用三角形全等、矩形的性質(zhì)、勾股定理等知識(shí)即可解決問題.(1)以EF為直徑作⊙O,易證⊙O與BC相切,從而得到符合條件的點(diǎn)Q唯一,然后通過(guò)添加輔助線,借助于正方形、特殊角的三角函數(shù)值等知識(shí)即可求出BQ長(zhǎng).(4)要滿足∠AMB=40°,可構(gòu)造以AB為邊的等邊三角形的外接圓,該圓與線段CD的交點(diǎn)就是滿足條件的點(diǎn),然后借助于等邊三角形的性質(zhì)、特殊角的三角函數(shù)值等知識(shí),就可算出符合條件的DM長(zhǎng).【詳解】(1)①作AD的垂直平分線交BC于點(diǎn)P,如圖①,則PA=PD.∴△PAD是等腰三角形.∵四邊形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以點(diǎn)D為圓心,AD為半徑畫弧,交BC于點(diǎn)P′,如圖①,則DA=DP′.∴△P′AD是等腰三角形.∵四邊形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′==.∴BP′=2-.③點(diǎn)A為圓心,AD為半徑畫弧,交BC于點(diǎn)P″,如圖①,則AD=AP″.∴△P″AD是等腰三角形.同理可得:BP″=.綜上所述:在等腰三角形△ADP中,若PA=PD,則BP=1;若DP=DA,則BP=2-;若AP=AD,則BP=.(1)∵E、F分別為邊AB、AC的中點(diǎn),∴EF∥BC,EF=BC.∵BC=11,∴EF=4.以EF為直徑作⊙O,過(guò)點(diǎn)O作OQ⊥BC,垂足為Q,連接EQ、FQ,如圖②.∵AD⊥BC,AD=4,∴EF與BC之間的距離為4.∴OQ=4∴OQ=OE=4.∴⊙O與BC相切,切點(diǎn)為Q.∵EF為⊙O的直徑,∴∠EQF=90°.過(guò)點(diǎn)E作EG⊥BC,垂足為G,如圖②.∵EG⊥BC,OQ⊥BC,∴EG∥OQ.∵EO∥GQ,EG∥OQ,∠EGQ=90°,OE=OQ,∴四邊形OEGQ是正方形.∴GQ=EO=4,EG=OQ=4.∵∠B=40°,∠EGB=90°,EG=4,∴BG=.∴BQ=GQ+BG=4+.∴當(dāng)∠EQF=90°時(shí),BQ的長(zhǎng)為4+.(4)在線段CD上存在點(diǎn)M,使∠AMB=40°.理由如下:以AB為邊,在AB的右側(cè)作等邊三角形ABG,作GP⊥AB,垂足為P,作AK⊥BG,垂足為K.設(shè)GP與AK交于點(diǎn)O,以點(diǎn)O為圓心,OA為半徑作⊙O,過(guò)點(diǎn)O作OH⊥CD,垂足為H,如圖③.則⊙O是△ABG的外接圓,∵△ABG是等邊三角形,GP⊥AB,∴AP=PB=AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等邊三角形,AK⊥BG,∴∠BAK=∠GAK=40°.∴OP=AP?tan40°=145×=25.∴OA=1OP=90.∴OH<OA.∴⊙O與CD相交,設(shè)交點(diǎn)為M,連接MA、MB,如圖③.∴∠AMB=∠AGB=40°,OM=OA=90..∵OH⊥CD,OH=6,OM=90,∴HM==40.∵AE=200,OP=25,∴DH=200-25.若點(diǎn)M在點(diǎn)H的左邊,則DM=DH+HM=200-25+40.∵200-25+40>420,∴DM>CD.∴點(diǎn)M不在線段CD上,應(yīng)舍去.若點(diǎn)M在點(diǎn)H的右邊,則DM=DH-HM=200-25-40.∵200-25-40<420,∴DM<CD.∴點(diǎn)M在線段CD上.綜上所述:在線段CD上存在唯一的點(diǎn)M,使∠AMB=40°,此時(shí)DM的長(zhǎng)為(200-25-40)米.【點(diǎn)睛】本題考查了垂直平分線的性質(zhì)、矩形的性質(zhì)、等邊三角形的性質(zhì)、正方形的判定與性質(zhì)、直線與圓的位置關(guān)系、圓周角定理、三角形的中位線定理、全等三角形的判定與性質(zhì)、勾股定理、特殊角的三角函數(shù)值等知識(shí),考查了操作、探究等能力,綜合性非常強(qiáng).而構(gòu)造等邊三角形及其外接圓是解決本題的關(guān)鍵.22、證明見解析.【解析】

根據(jù)在同圓中等弦對(duì)的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對(duì)的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對(duì)的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點(diǎn)睛】本題利用了在同圓中等弦對(duì)的弧相等,等弧對(duì)的弦,圓周角相等,等量減去等量仍是等量求解.23、(1)相等或互補(bǔ);(2)①BD+AB=BC;②AB﹣BD=BC;(3)BC=或.【解析】

(1)分為點(diǎn)C,D在直線MN同側(cè)和點(diǎn)C,D在直線MN兩側(cè),兩種情況討論即可解題,(2)①作輔助線,證明△BCD≌△FCA,得BC=FC,∠BCD=∠FCA,∠FCB=90°,即△BFC是等腰直角三角形,即可解題,②在射線AM上截取AF=BD,連接CF,證明△BCD≌△FCA,得△BFC是等腰直角三角形,即可解題,(3)分為當(dāng)點(diǎn)C,D在直線MN同側(cè),當(dāng)點(diǎn)C,D在直線MN兩側(cè),兩種情況解題即可,見詳解.【詳解】解:(1)相等或互補(bǔ);理由:當(dāng)點(diǎn)C,D在直線MN同側(cè)時(shí),如圖1,∵AC⊥CD,BD⊥MN,∴∠ACD=∠BDC=90°,在四邊形ABDC中,∠BAD+∠D=360°﹣∠ACD﹣∠BDC=180°,∵∠BAC+∠CAM=180°,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論