版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2019屆高考數(shù)學(xué)專題七選修(xuǎnxiū)選修(xuǎnxiū)4-5不等式選講課件文第一頁(yè),共47頁(yè)。熱點(diǎn)題型1絕對(duì)值不等式【感悟經(jīng)典】【典例】(2018·合肥二模)函數(shù)(hánshù)f(x)=|2x-a|+a.(1)當(dāng)a=2時(shí),求不等式f(x)≤6的解集.(2)設(shè)函數(shù)(hánshù)g(x)=|2x-1|.當(dāng)x∈R時(shí),f(x)+g(x)≥3,求a的取值范圍.第二頁(yè),共47頁(yè)?!韭?lián)想解題】(1)看到解絕對(duì)值不等式,想到(xiǎnɡdào)利用絕對(duì)值的意義.(2)看到x∈R時(shí)的恒成立問題,想到(xiǎnɡdào)分類討論解絕對(duì)值不等式.第三頁(yè),共47頁(yè)。【標(biāo)準(zhǔn)解答(jiědá)】(1)當(dāng)a=2時(shí),f(x)=|2x-2|+2.解不等式|2x-2|+2≤6,得-1≤x≤3,因此f(x)≤6的解集為{x|-1≤x≤3}.第四頁(yè),共47頁(yè)。(2)當(dāng)x∈R時(shí),f(x)+g(x)=|2x-a|+a+|1-2x|≥|2x-a+1-2x|+a=|1-a|+a,當(dāng)x=時(shí)等號(hào)成立(chénglì),所以當(dāng)x∈R時(shí),f(x)+g(x)≥3等價(jià)于|1-a|+a≥3.①第五頁(yè),共47頁(yè)。當(dāng)a≤1時(shí),①等價(jià)(děngjià)于1-a+a≥3,無解;當(dāng)a>1時(shí),①等價(jià)(děngjià)于a-1+a≥3,解得a≥2;所以a的取值范圍是[2,+∞).第六頁(yè),共47頁(yè)?!疽?guī)律(guīlǜ)方法】含絕對(duì)值不等式的常用解法(1)根本性質(zhì)法:對(duì)a>0,|x|<a?-a<x<a,|x|>a?x>a或x<-a.(2)平方法:兩邊平方去掉絕對(duì)值符號(hào).這適應(yīng)于兩邊都是正數(shù)的絕對(duì)值不等式.第七頁(yè),共47頁(yè)。(3)零點(diǎn)分區(qū)間法(或叫定義法):含有兩個(gè)(liǎnɡɡè)或兩個(gè)(liǎnɡɡè)以上絕對(duì)值符號(hào)的不等式,可用零點(diǎn)分區(qū)間法脫去絕對(duì)值符號(hào),將其轉(zhuǎn)化為與之等價(jià)的不含絕對(duì)值符號(hào)的不等式(組)求解.第八頁(yè),共47頁(yè)。(4)幾何(jǐhé)法:利用絕對(duì)值的幾何(jǐhé)意義,畫出數(shù)軸,將絕對(duì)值轉(zhuǎn)化為數(shù)軸上兩點(diǎn)的距離求解.(5)數(shù)形結(jié)合法:在直角坐標(biāo)系中作出不等式兩邊所對(duì)應(yīng)的兩個(gè)函數(shù)的圖象,利用函數(shù)圖象求解.第九頁(yè),共47頁(yè)?!緦?duì)點(diǎn)訓(xùn)練(xùnliàn)】1.函數(shù)f(x)=|x-a|+|x+2|.(1)當(dāng)a=1時(shí),求不等式f(x)≤5的解集.(2)?x0∈R,f(x0)≤|2a+1|,求a的取值范圍.第十頁(yè),共47頁(yè)?!窘馕?jiěxī)】(1)當(dāng)a=1時(shí),f(x)=|x-1|+|x+2|,①當(dāng)x≤-2時(shí),f(x)=-2x-1,令f(x)≤5即-2x-1≤5,解得-3≤x≤-2,②當(dāng)-2<x<1時(shí),f(x)=3,顯然f(x)≤5成立,所以-2<x<1,第十一頁(yè),共47頁(yè)。③當(dāng)x≥1時(shí),f(x)=2x+1,令f(x)≤5即2x+1≤5,解得1≤x≤2,綜上所述,不等式的解集為{x|-3≤x≤2}.(2)因?yàn)?yīnwèi)f(x)=|x-a|+|x+2|≥|(x-a)-(x+2)|=|a+2|,因?yàn)?yīnwèi)?x0∈R,有f(x)≤|2a+1|成立,第十二頁(yè),共47頁(yè)。所以(suǒyǐ)只需|a+2|≤|2a+1|,化簡(jiǎn)可得a2-1≥0,解得a≤-1或a≥1,所以(suǒyǐ)a的取值范圍為(-∞,-1]∪[1,+∞).第十三頁(yè),共47頁(yè)。2.函數(shù)f(x)=|2x-4|+|x+1|,x∈R.(1)解不等式f(x)≤9.(2)假設(shè)(jiǎshè)方程f(x)=-x2+a在區(qū)間[0,2]有解,求實(shí)數(shù)a的取值范圍.第十四頁(yè),共47頁(yè)?!窘馕?jiěxī)】(1)f(x)≤9可化為|2x-4|+|x+1|≤9或或;2<x≤4或-1≤x≤2或-2≤x<-1;所以不等式的解集為[-2,4].第十五頁(yè),共47頁(yè)。(2)由題意:f(x)=-x2+a?a=x2-x+5,x∈[0,2],所以方程f(x)=-x2+a在區(qū)間[0,2]有解?函數(shù)y=a和函數(shù)y=x2-x+5圖象(túxiànɡ)在區(qū)間[0,2]上有交點(diǎn),因?yàn)楫?dāng)x∈[0,2]時(shí),y=x2-x+5∈[,7],所以a∈[,7].第十六頁(yè),共47頁(yè)?!咎岱謧溥x】1.(2018·南陽(yáng)三模)函數(shù)(hánshù)f(x)=|3x+2|.(1)解不等式f(x)<4-|x-1|.(2)m+n=1(m,n>0),假設(shè)|x-a|-f(x)≤+(a>0)恒成立,求實(shí)數(shù)a的取值范圍.第十七頁(yè),共47頁(yè)?!窘馕?jiěxī)】(1)不等式f(x)<4-|x-1|,即|3x+2|+|x-1|<4,x∈.(2)+=(m+n)=1+1++≥4,第十八頁(yè),共47頁(yè)。令g(x)=|x-a|-f(x)=|x-a|-|3x+2|=第十九頁(yè),共47頁(yè)。所以(suǒyǐ)x=-時(shí),g(x)max=+a,要使不等式恒成立,只需g(x)max=+a≤4即0<a≤.第二十頁(yè),共47頁(yè)。2.(2018·沈陽(yáng)一模)關(guān)于x的不等式|ax-2|+|ax-a|≥2(a>0).(1)當(dāng)a=1時(shí),求此不等式的解集.(2)假設(shè)此不等式的解集為R,求實(shí)數(shù)(shìshù)a的取值范圍.第二十一頁(yè),共47頁(yè)?!窘馕觥?1)當(dāng)a=1時(shí),不等式為|x-2|+|x-1|≥2,由絕對(duì)值的幾何意義(yìyì)知,不等式的意義(yìyì)可解釋為數(shù)軸上的點(diǎn)x到點(diǎn)1,2的距離之和大于等于2.所以x≥或x≤.第二十二頁(yè),共47頁(yè)。所以(suǒyǐ)不等式的解集為注:也可用零點(diǎn)分段法求解.第二十三頁(yè),共47頁(yè)。(2)因?yàn)閨ax-2|+|ax-a|≥|a-2|,所以(suǒyǐ)原不等式的解集為R等價(jià)于|a-2|≥2,所以(suǒyǐ)a≥4或a≤0.又a>0,所以(suǒyǐ)a≥4.所以(suǒyǐ)實(shí)數(shù)a的取值范圍是[4,+∞).第二十四頁(yè),共47頁(yè)。熱點(diǎn)題型2不等式的證明【感悟經(jīng)典】【典例】1.(2017·江蘇高考(ɡāokǎo))a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd≤8.2.x,y∈R.第二十五頁(yè),共47頁(yè)。(1)假設(shè)x,y滿足(mǎnzú)|x-3y|<,|x+2y|<,求證:|x|<.(2)求證:x4+16y4≥2x3y+8xy3.第二十六頁(yè),共47頁(yè)?!韭?lián)想解題】1.看到a2+b2,c2+d2與ac+bd,想到利用(lìyòng)柯西不等式.2.(1)看到絕對(duì)值不等式,想到利用(lìyòng)|a+b|≤|a|+|b|.(2)看到高次多項(xiàng)式的證明,想到利用(lìyòng)作差比較法.第二十七頁(yè),共47頁(yè)?!緲?biāo)準(zhǔn)(biāozhǔn)解答】1.由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2),因?yàn)閍2+b2=4,c2+d2=16,所以(ac+bd)2≤64,因此ac+bd≤8.第二十八頁(yè),共47頁(yè)。2.(1)因?yàn)?yīnwèi)|5x|=|2(x-3y)+3(x+2y)|≤|2(x3y)|+|3(x+2y)|<2·+3·=,所以|x|<,第二十九頁(yè),共47頁(yè)。(2)x4+16y4-(2x3y+8xy3)=x3(x-2y)-8y3(x-2y)=(x-2y)(x3-8y3)=(x-2y)2(x2+2xy+4y2)=(x-2y)2[(x2+2xy+y2)+3y2]≥0,即得x4+16y4≥2x3y+8xy3.第三十頁(yè),共47頁(yè)?!疽?guī)律方法】絕對(duì)值不等式的證明含絕對(duì)值不等式的證明題主要分兩類:一類是比較簡(jiǎn)單的不等式,往往可通過(tōngguò)公式法、平方法、換元法等去掉絕對(duì)值轉(zhuǎn)化為常見的不等式證明題,或利用絕對(duì)值三角第三十一頁(yè),共47頁(yè)。不等式性質(zhì)定理:||a|-|b||≤|a±b|≤|a|+|b|,通過適當(dāng)?shù)奶?、拆?xiàng)證明(zhèngmíng);另一類是綜合性較強(qiáng)的函數(shù)型含絕對(duì)值的不等式,往往可考慮利用一般情況成立那么特殊情況也成立的思想,或利用一元二次方程的根的分布等方法來證明(zhèngmíng).第三十二頁(yè),共47頁(yè)?!緦?duì)點(diǎn)訓(xùn)練】1.函數(shù)(hánshù)f(x)=|x+1|.(1)求不等式f(x)<|2x+1|-1的解集M.(2)設(shè)a,b∈M,證明:f(ab)>f(a)-f(-b).第三十三頁(yè),共47頁(yè)?!窘馕?jiěxī)】方法一:(1)①當(dāng)x≤-1時(shí),原不等式可化為-x-1<-2x-2,解得x<-1,此時(shí)原不等式的解是x<-1;第三十四頁(yè),共47頁(yè)。②當(dāng)-1<x<-時(shí),原不等式可化為x+1<-2x-2,解得x<-1,此時(shí)(cǐshí)原不等式無解;第三十五頁(yè),共47頁(yè)。③當(dāng)x≥-時(shí),原不等式可化為x+1<2x,解得x>1,此時(shí)(cǐshí)原不等式的解是x>1;綜上,M={x|x<-1或x>1}.第三十六頁(yè),共47頁(yè)。(2)因?yàn)?yīnwèi)f(ab)=|ab+1|=|(ab+b)+(1-b)|≥|ab+b|-|1-b|=|b||a+1|-|1-b|.因?yàn)?yīnwèi)a,b∈M,所以|b|>1,|a+1|>0,第三十七頁(yè),共47頁(yè)。所以f(ab)>|a+1|-|1-b|,即f(ab)>f(a)-f(-b).方法(fāngfǎ)二:(1)同方法(fāngfǎ)一.(2)因?yàn)閒(a)-f(-b)=|a+1|-|-b+1|≤|a+1-(-b+1)|=|a+b|,第三十八頁(yè),共47頁(yè)。所以(suǒyǐ),要證f(ab)>f(a)-f(-b),只需證|ab+1|>|a+b|,即證|ab+1|2>|a+b|2,即證a2b2+2ab+1>a2+2ab+b2,第三十九頁(yè),共47頁(yè)。即證a2b2-a2-b2+1>0,即證(a2-1)(b2-1)>0.因?yàn)閍,b∈M,所以(suǒyǐ)a2>1,b2>1,所以(suǒyǐ)(a2-1)(b2-1)>0成立,所以(suǒyǐ)原不等式成立.第四十頁(yè),共47頁(yè)。2.設(shè)函數(shù)f(x)=|x-a|+|2x+4|-3(a≠-2).(1)試比較f(a)與f(-2)的大小.(2)假設(shè)函數(shù)f(x)的圖象與x軸能圍成一個(gè)三角形,求實(shí)數(shù)(shìshù)a的取值范圍.第四十一頁(yè),共47頁(yè)。【解析】(1)因?yàn)?yīnwèi)f(a)-f(-2)=2|a+2|-|a+2|=|a+2|≥0,而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 換熱站安裝工程主要施工技術(shù)方案
- 樁間網(wǎng)噴施工技術(shù)交底
- 某衡器廠數(shù)據(jù)統(tǒng)計(jì)分析方案
- 某家具公司產(chǎn)品運(yùn)輸保險(xiǎn)規(guī)定
- 某衡器廠噪音防控實(shí)施辦法
- 某輪胎廠智能檢測(cè)技術(shù)應(yīng)用規(guī)范
- 化工課件教學(xué)課件
- 家具公司員工福利管理細(xì)則
- 化工電氣基礎(chǔ)知識(shí)
- 化工檢修作業(yè)培訓(xùn)
- 2025北京西城區(qū)初一(下)期末英語(yǔ)試題及答案
- 2026.01.01施行的《招標(biāo)人主體責(zé)任履行指引》
- DB11∕T 689-2025 既有建筑抗震加固技術(shù)規(guī)程
- 2025年湖南公務(wù)員《行政職業(yè)能力測(cè)驗(yàn)》試題及答案
- 提前招生面試制勝技巧
- 2024中國(guó)類風(fēng)濕關(guān)節(jié)炎診療指南課件
- 2026年中國(guó)家居行業(yè)發(fā)展展望及投資策略報(bào)告
- 陜西省西安鐵一中2026屆高一物理第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析
- DB3207∕T 1046-2023 香菇菌棒生產(chǎn)技術(shù)規(guī)程
- 2025-2030腦機(jī)接口神經(jīng)信號(hào)解碼芯片功耗降低技術(shù)路線圖報(bào)告
- 空調(diào)安裝應(yīng)急預(yù)案
評(píng)論
0/150
提交評(píng)論