版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
山西省懷仁一中2024學年數(shù)學高二上期末考試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,在直線l上,則直線l一個方向向量為()A. B.C. D.2.求點關于x軸的對稱點的坐標為()A. B.C. D.3.已知正實數(shù)x,y滿足4x+3y=4,則的最小值為()A. B.C. D.4.在正方體中,為棱的中點,為棱的中點,則直線與平面所成角的正弦值為()A. B.C. D.5.已知命題:;:若,則,則下列判斷正確的是()A.為真,為真,為假 B.為真,為假,為真C.為假,為假,為假 D.為真,為假,為假6.已知,,若,則實數(shù)的值為()A. B.C. D.27.直線x+y﹣1=0被圓(x+1)2+y2=3截得的弦長等于()A. B.2C.2 D.48.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.769.甲、乙兩人下棋,甲獲勝的概率為30%,甲不輸?shù)母怕蕿?0%,則甲、乙下成平局的概率()A.50% B.30%C.10% D.60%10.若,則()A.22 B.19C.-20 D.-1911.若圓與圓相切,則實數(shù)a的值為()A.或0 B.0C. D.或12.已知向量,,且與互相平行,則的值為()A.-2 B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,將一個正方體沿相鄰三個面的對角線截出一個棱錐,若該棱錐的體積為,則該正方體的體對角線長為___________.14.根據(jù)某市有關統(tǒng)計公報顯示,隨著“一帶一路”經(jīng)貿(mào)合作持續(xù)深化,該市對外貿(mào)易近幾年持續(xù)繁榮,2017年至2020年每年進口總額x(單位:千億元)和出口總額y(單位:千億元)之間的一組數(shù)據(jù)如下:2017年2018年2019年2020年x1.82.22.63.0y2.02.83.24.0若每年的進出口總額x,y滿足線性相關關系,則______;若計劃2022年出口總額達到5千億元,預計該年進口總額為______千億元15.從雙曲線上一點作軸的垂線,垂足為,則線段中點的軌跡方程為___________.16.命題“x≥1,x2-2x+4≥0”的否定為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)解不等式;(2)若不等式對恒成立,求實數(shù)m的取值范圍18.(12分)已知橢圓,離心率分別為左右焦點,橢圓上一點滿足,且的面積為1.(1)求橢圓的標準方程;(2)過點作斜率為的直線交橢圓于兩點.過點且平行于的直線交橢圓于點,證明:為定值.19.(12分)已知橢圓的一個焦點與拋物線的焦點重合,橢圓上的動點到焦點的最大距離為.(1)求橢圓的標準方程;(2)過作一條不與坐標軸垂直的直線交橢圓于兩點,弦的中垂線交軸于,當變化時,是否為定值?若是,定值為多少?20.(12分)已知橢圓與橢圓有共同的焦點,且橢圓經(jīng)過點.(1)求橢圓的標準方程;(2)設為橢圓的左焦點,為橢圓上任意一點,為坐標原點,求的最小值.21.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內(nèi)有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.22.(10分)如圖,直三棱柱中,底面是邊長為2的等邊三角形,D為棱AC中點.(1)證明:AB1//平面;(2)若面B1BC1與面BC1D的夾角余弦值為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】利用直線的方向向量的定義直接求解.【題目詳解】因為,在直線l上,所以直線l的一個方向向量為.故選:C.2、D【解題分析】根據(jù)點關于坐標軸的對稱點特征,直接寫出即可.【題目詳解】A點關于x軸對稱點,橫坐標不變,縱坐標與豎坐標為原坐標的相反數(shù),故點的坐標為,故選:D3、A【解題分析】將4x+3y=4變形為含2x+1和3y+2的等式,即2(2x+1)+(3y+2)=8,再由換元法、基本不等式換“1”的代換求解即可【題目詳解】由正實數(shù)x,y滿足4x+3y=4,可得2(2x+1)+(3y+2)=8,令a=2x+1,b=3y+2,可得2a+b=8,∴,即,當且僅當時取等號,∴的最小值為.故選:A4、D【解題分析】建立空間直角坐標系,計算平面的法向量,利用線面角的向量公式即得解【題目詳解】不妨設正方體的棱長為2,連接,以為坐標原點如圖建立空間直角坐標系,則,,,,,,由于平面,平面,故又正方形,故平面故平面,所以為平面的一個法向量,故直線與平面所成角正弦值為.故選:D5、D【解題分析】先判斷出命題,的真假,即可判斷.【題目詳解】因為成立,所以命題為真,由可得或,所以命題為假命題,所以為真,為假,為假.故選:D.6、D【解題分析】由,然后根據(jù)向量數(shù)量積的坐標運算即可求解.【題目詳解】解:因,,所以,因為,所以,即,解得,故選:D.7、B【解題分析】如圖,圓(x+1)2+y2=3的圓心為M(?1,0),圓半徑|AM|=,圓心M(?1,0)到直線x+y?1=0的距離:|,∴直線x+y?1=0被圓(x+1)2+y2=3截得的弦長:.故選B.點睛:本題考查圓的標準方程以及直線和圓的位置關系.判斷直線與圓的位置關系一般有兩種方法:1.代數(shù)法:將直線方程與圓方程聯(lián)立方程組,再將二元方程組轉(zhuǎn)化為一元二次方程,該方程解的情況即對應直線與圓的位置關系.這種方法具有一般性,適合于判斷直線與圓錐曲線的位置關系,但是計算量較大.2.幾何法:圓心到直線的距離與圓半徑比較大小,即可判斷直線與圓的位置關系.這種方法的特點是計算量較小.當直線與圓相交時,可利用垂徑定理得出圓心到直線的距離,弦長和半徑的勾股關系.8、A【解題分析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【題目詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A9、A【解題分析】根據(jù)甲獲勝和甲、乙兩人下成平局是互斥事件即可求解.【題目詳解】甲不輸有兩種情況:甲獲勝或甲、乙兩人下成平局,甲獲勝和甲、乙兩人下成平局是互斥事件,所以甲、乙兩人下成平局的概率為.故選:A.10、C【解題分析】將所求進行變形可得,根據(jù)二項式定理展開式,即可求得答案.【題目詳解】由題意得所以.故選:C11、D【解題分析】根據(jù)給定條件求出兩圓圓心距,再借助兩圓相切的充要條件列式計算作答.【題目詳解】圓的圓心,半徑,圓的圓心,半徑,而,即點不可能在圓內(nèi),則兩圓必外切,于是得,即,解得,所以實數(shù)a的值為或.故選:D12、A【解題分析】應用空間向量坐標的線性運算求、的坐標,根據(jù)空間向量平行有,即可求的值.【題目詳解】由題設,,,∵與互相平行,∴且,則,可得.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、.【解題分析】先根據(jù)棱錐的體積求出正方體的棱長,進而求出正方體的體對角線長.【題目詳解】如圖,連接,設正方體棱長為,則.所以,體對角線.故答案為:.14、①.1.6;②.3.65.【解題分析】根據(jù)給定數(shù)表求出樣本中心點,代入即可求得,取可求出該年進口總額.【題目詳解】由數(shù)表得:,,因此,回歸直線過點,由,解得,此時,,當時,即,解得,所以,預計該年進口總額為千億元.故答案為:1.6;3.6515、.【解題分析】根據(jù)題意,設,進而根據(jù)中點坐標公式及點P已知雙曲線上求得答案.【題目詳解】由題意,設,則,則,即,因為,則,即的軌跡方程為.16、【解題分析】根據(jù)還有一個量詞的命題的否定的方法解答即可.【題目詳解】命題“x≥1,x2-2x+4≥0”的否定為“”.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】(1)移項,兩邊平方即可獲解;(2)利用絕對值不等式即可.【小問1詳解】即即,即即即或所以不等式的解集為【小問2詳解】由題知對恒成立因為.所以,解得即或,所以實數(shù)的取值范為18、(1)(2)證明見解析【解題分析】(1)方法一:根據(jù)離心率以及,可得出,將條件轉(zhuǎn)化為點在以為直徑的圓上,即為圓與橢圓的交點,將的面積用表示,求出,進而求出橢圓的標準方程;方法二:根據(jù)橢圓的定義,,再根據(jù)勾股定理和直角三角形的面積公式,即可解得,又由離心率求出,則可求出橢圓的標準方程;(2)設出直線的方程,代入橢圓方程,根據(jù)韋達定理表示出,再將直線的方程代入橢圓方程,求出,則為定值.【小問1詳解】方法一:由離心率,得:,所以橢圓上一點,滿足,所以點為圓:與橢圓的交點,聯(lián)立方程組解得所以,解得:,所以橢圓的標準方程為:.方法二:由橢圓定義;,因為,所以,得到:,即,又,得所以橢圓C的標準方程為:;【小問2詳解】設直線AB的方程為:.得設過點且平行于的直線方程:.19、(1)(2)是,【解題分析】(1)由拋物線方程求出其焦點坐標,結(jié)合橢圓的幾何性質(zhì)列出,的方程,解方程求,由此可得橢圓方程,(2)聯(lián)立直線橢圓橢圓方程,求出弦的長和其中垂線方程,再計算,由此完成證明.【小問1詳解】拋物線的交點坐標為(1,0),,又,又,∴,橢圓的標準方程為.【小問2詳解】設直線的斜率為,則直線的方程為,聯(lián)立消元得到,顯然,,∴,又的中點坐標為,直線的中垂線的斜率為∴直線的中垂線方程為,令,,(常數(shù)).【題目點撥】求定值問題常見的方法有兩種:(1)從特殊入手,求出定值,再證明這個值與變量無關(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值20、(1)(2)【解題分析】(1)設橢圓的方程為,將點的坐標代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)設點,則,且,利用平面向量數(shù)量積的坐標運算結(jié)合二次函數(shù)的基本性質(zhì)可求得的最小值.【小問1詳解】(1)由題可設橢圓的方程為,由橢圓經(jīng)過點,可得,解得或(舍).所以,橢圓的標準方程為.【小問2詳解】解:易知,設點,則,且,,,則,當且僅當時,等號成立,故的最小值為.21、(1);(2)﹒【解題分析】(1)根據(jù)題意,作出圖像,可得,由此可知M的軌跡C為以O、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯(lián)立,用韋達定理表示的面積,根據(jù)變量范圍可求面積的最大值﹒【小問1詳解】以OA中點G坐標原點,OA所在直線為x軸建立平面直角坐標系,如圖:∴可知,,設折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O,A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設,,則的周長為當軸時,l的方程為,,,當l與x軸不垂直時,設,由得,∵>0,∴,,,令,則,,∵,∴,∴.綜上可知,S的取值范圍是22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 耳鼻喉科異物誤吸不良事件的報告時限管理
- 耗材跨境供應鏈中的文化適應性策略
- 企業(yè)建立研發(fā)準備金制度
- 耐藥菌感染標志物指導多學科抗感染策略調(diào)整
- 耐藥治療的未來研究方向
- 衛(wèi)生許可證消殺制度
- 五小設施衛(wèi)生管理制度
- 衛(wèi)生院物資入庫制度
- 人事檔案的保管制度
- 2025-2026學年河南省天一大聯(lián)考高三上學期階段性檢測語文試題
- 《LTCC生產(chǎn)流程》課件
- 年度工作總結(jié)PPT模板
- 7KW交流交流充電樁說明書
- 神經(jīng)指南:腦血管造影術(shù)操作規(guī)范中國專家共識
- 物理必修一綜合測試題
- 廣東二甲以上醫(yī)院 共152家
- 電力溫控行業(yè)研究報告
- GB/T 4358-1995重要用途碳素彈簧鋼絲
- 2023年1月浙江首考高考英語試卷真題及答案(含聽力原文mp3+作文范文)
- 唯物史觀指導初中歷史教學
- (優(yōu)質(zhì)課件)人教版小學五年級上冊數(shù)學《列方程解應用題》課件3
評論
0/150
提交評論