版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一個扇形的圓心角為,半徑為1.則它的弧長為()A. B. C. D.2.已知角α終邊上一點P(-2,3),則cos(A.32 B.-32 C.3.函數(shù)的定義域是().A. B. C. D.4.已知等差數(shù)列的前項和為,,,則使取得最大值時的值為()A.5 B.6 C.7 D.85.若且,則的最小值是()A.6 B.12 C.24 D.166.如圖,向量,,,則向量可以表示為()A.B.C.D.7.已知兩個正數(shù)a,b滿足,則的最小值是(
)A.2 B.3 C.4 D.58.已知數(shù)列滿足是數(shù)列的前項和,則()A. B. C. D.9.下列函數(shù)中,在區(qū)間上是減函數(shù)的是()A. B. C. D.10.在中,角所對的邊分別為,若,則此三角形()A.無解 B.有一解 C.有兩解 D.解的個數(shù)不確定二、填空題:本大題共6小題,每小題5分,共30分。11.已知、、分別是的邊、、的中點,為的外心,且,給出下列等式:①;②;③;④其中正確的等式是_________(填寫所有正確等式的編號).12.若則____________13.若等比數(shù)列滿足,且公比,則_____.14.已知向量,則的單位向量的坐標為_______.15.圓錐的底面半徑是3,高是4,則圓錐的側(cè)面積是__________.16.設的內(nèi)角,,所對的邊分別為,,.已知,,如果解此三角形有且只有兩個解,則的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,.(1)求的坐標;(2)求.18.在梯形ABCD中,,,,.(1)求AC的長;(2)求梯形ABCD的高.19.已知等差數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)請確定是否是數(shù)列中的項?20.已知,,.(1)求關(guān)于的表達式,并求的最小正周期;(2)若當時,的最小值為,求的值.21.已知函數(shù).(1)求的單調(diào)增區(qū)間;(2)當時,求的最大值、最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用扇形弧長公式求解即可得到結(jié)果.【詳解】由扇形弧長公式得:本題正確選項:【點睛】本題考查扇形弧長公式的應用,屬于基礎題.2、A【解析】角α終邊上一點P(-2,3),所以cos(3、C【解析】函數(shù)的定義域即讓原函數(shù)有意義即可;原式中有對數(shù),則故得到定義域為.故選C.4、D【解析】
由題意求得數(shù)列的通項公式為,令,解得,即可得到答案.【詳解】由題意,根據(jù)等差數(shù)列的性質(zhì),可得,即又由,即,所以等差數(shù)列的公差為,又由,解得,所以數(shù)列的通項公式為,令,解得,所以使得取得最大值時的值為8,故選D.【點睛】本題主要考查了等差數(shù)列的性質(zhì),等差數(shù)列的通項公式,以及前n項和最值問題,其中解答中熟記等差數(shù)列的性質(zhì)和通項公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解析】試題分析:,當且僅當時等號成立,所以最小值為16考點:均值不等式求最值6、C【解析】
利用平面向量加法和減法的運算,求得的線性表示.【詳解】依題意,即,故選C.【點睛】本小題主要考查平面向量加法和減法的運算,屬于基礎題.7、D【解析】
根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點睛】本題考查基本不等式的性質(zhì)以及應用,關(guān)鍵是掌握基本不等式應用的條件.8、D【解析】
由已知遞推關(guān)系式可以推出數(shù)列的特征,即數(shù)列和均是等比數(shù)列,利用等比數(shù)列性質(zhì)求解即可.【詳解】解:由已知可得,當時,由得,所以數(shù)列和均是公比為2的等比數(shù)列,首項分別為2和1,由等比數(shù)列知識可求得,,故選:D.【點睛】本題主要考查遞推關(guān)系式,及等比數(shù)列的相關(guān)知識,屬于中檔題.9、C【解析】
根據(jù)初等函數(shù)的單調(diào)性對各個選項的函數(shù)的解析式進行逐一判斷【詳解】函數(shù)在單調(diào)遞增,在單調(diào)遞增.
在單調(diào)遞減,在單調(diào)遞增.故選:C【點睛】本題主要考查了基本初等函數(shù)的單調(diào)性的判斷,屬于基礎試題.10、C【解析】
利用正弦定理求,與比較的大小,判斷B能否取相應的銳角或鈍角.【詳解】由及正弦定理,得,,B可取銳角;當B為鈍角時,,由正弦函數(shù)在遞減,,可取.故選C.【點睛】本題考查正弦定理,解三角形中何時無解、一解、兩解的條件判斷,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、①②④.【解析】
根據(jù)向量的中點性質(zhì)與向量的加法運算,可判斷①②③.【詳解】、、分別是的邊、、的中點,為的外心,且,設三條中線交點為G,如下圖所示:對于①,由三角形中線性質(zhì)及向量加法運算可知,所以①正確;對于②,,所以②正確;對于③,,所以③錯誤;對于,由外心性質(zhì)可知,所以故正確.綜上可知,正確的為①②④.故答案為:①②④.【點睛】本題考查了向量的線性運算,三角形外心的性質(zhì)及應用,屬于基礎題.12、【解析】因為,所以=.故填.13、.【解析】
利用等比數(shù)列的通項公式及其性質(zhì)即可得出.【詳解】,故答案為:1.【點睛】本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于容易題.14、.【解析】
由結(jié)論“與方向相同的單位向量為”可求出的坐標.【詳解】,所以,,故答案為.【點睛】本題考查單位向量坐標的計算,考查共線向量的坐標運算,充分利用共線單位向量的結(jié)論可簡化計算,考查運算求解能力,屬于基礎題.15、【解析】分析:由已知中圓錐的底面半徑是,高是,由勾股定理,我們可以計算出圓錐的母線長,代入圓錐側(cè)面積公式,即可得到結(jié)論.詳解:圓錐的底面半徑是,高是,圓錐的母線長,則圓錐側(cè)面積公式,故答案為.點睛:本題主要考查圓錐的性質(zhì)與圓錐側(cè)面積公式,意在考查對基本公式的掌握與理解,屬于簡單題.16、【解析】
由余弦定理寫出c與x的等式,再由有兩個正解,解出x的取值范圍【詳解】根據(jù)余弦定理:代入數(shù)據(jù)并整理有,有且僅有兩個解,記為則:【點睛】本題主要考查余弦定理以及韋達定理,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)根據(jù)向量的數(shù)乘運算及加法運算即可得到本題答案;(2)根據(jù)向量的模的計算公式即可得到本題答案.【詳解】(1)因為,,所以;所以;(2)因為,所以.【點睛】本題主要考查平面向量的線性運算以及模的計算,屬基礎題.18、(1)(2).【解析】
(1)首先計算,再利用正弦定理計算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函數(shù)得到高的大小.【詳解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.過點D作于E,則DE為梯形ABCD的高.,,.在直角中,.即梯形ABCD的高為.【點睛】本題考查了正弦定理,余弦定理,意在考查學生的計算能力和解決問題的能力.19、(1)(2)是數(shù)列中的第項【解析】
(1)直接利用等差數(shù)列的公式計算得到通項公式.(2)將3998代入通項公式,是否有整數(shù)解.【詳解】(1)設數(shù)列的公差為,由題意有,解得則數(shù)列的通項公式為,(2)假設是數(shù)列中的項,有,得,故是數(shù)列中的第項【點睛】本題考查了等差數(shù)列的公式,屬于簡單題.20、(1),;(2).【解析】
(1)根據(jù)向量數(shù)量積的坐標運算及輔助角公式得:,并求出最小正周期為;(2)由,得到,從而,再根據(jù)的最小值為,求得.【詳解】(1),所以.(2)當時,則,所以,所以,解得:.【點睛】本題考查向量與三角函數(shù)的交會,求函數(shù)的最值時,要注意整體思
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026黑龍江鶴崗市興山區(qū)招聘公益性崗位人員30人考試備考題庫及答案解析
- 2026上海市社會主義學院公開招聘專職教師筆試模擬試題及答案解析
- 2026年煙臺科技學院招聘(273人)筆試模擬試題及答案解析
- 2026年阜陽市界首市中醫(yī)院公開招聘專業(yè)技術(shù)人員考試備考題庫及答案解析
- 2026湖南長沙市雨花湘一外國語中學春季合同制教師招聘考試參考題庫及答案解析
- 2026年甘肅蘭州鐵路技師學院高校畢業(yè)生招聘考試備考試題及答案解析
- 2026年寵物行為訓練與健康管理培訓
- 2026中國國際商會新疆商會人員招聘20人考試參考題庫及答案解析
- 2026江蘇南京大學化學學院科研人員招聘筆試備考題庫及答案解析
- 2026曲靖市事業(yè)單位公開招聘工作人員(889人)考試備考題庫及答案解析
- 重慶市2026年高一(上)期末聯(lián)合檢測(康德卷)化學+答案
- 2026年湖南郴州市百福控股集團有限公司招聘9人備考考試題庫及答案解析
- 【四年級】【數(shù)學】【秋季上】期末家長會:數(shù)海引航愛伴成長【課件】
- 2025年中國船舶集團有限公司招聘筆試參考題庫含答案解析
- 辦公樓物業(yè)服務的品質(zhì)提升策略
- 養(yǎng)殖場土地租賃合同
- JBT 8200-2024 煤礦防爆特殊型電源裝置用鉛酸蓄電池(正式版)
- (正式版)SHT 3078-2024 立式圓筒形料倉工程設計規(guī)范
- 計算機就業(yè)能力展示
- 設備維修團隊的協(xié)作與溝通
- 華為三支柱運作之HRBP實踐分享概要課件
評論
0/150
提交評論