版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知中,,則角()A.60°或120° B.30°或90° C.30° D.90°2.三角形的三條邊長是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最大邊長為()A.4 B.5 C.6 D.73.已知角的頂點在原點,始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.4.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號,用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù).例如:,,已知函數(shù),則函數(shù)的值域為()A. B. C. D.5.若關(guān)于的不等式在區(qū)間上有解,則的取值范圍是()A. B. C. D.6.若三棱錐的所有頂點都在球的球面上,平面,,,且三棱錐的體積為,則球的體積為()A. B. C. D.7.已知向量,,,則()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.12 B.18C.24 D.309.如圖,隨機地在圖中撒一把豆子,則豆子落到陰影部分的概率是()A.12 B.34 C.110.若是兩條不同的直線,是三個不同的平面,則下列結(jié)論中正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),若,且,則__________.12.已知向量,滿足,與的夾角為,則在上的投影是;13.我國高鐵發(fā)展迅速,技術(shù)先進.經(jīng)統(tǒng)計,在經(jīng)停某站的高鐵列車中,有10個車次的正點率為0.97,有20個車次的正點率為0.98,有10個車次的正點率為0.99,則經(jīng)停該站高鐵列車所有車次的平均正點率的估計值為___________.14.七位評委為某跳水運動員打出的分?jǐn)?shù)的莖葉圖如圖,其中位數(shù)為_______.15._____16.在中,,,則的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)當(dāng),時,求不等式的解集;(2)若,,的最小值為2,求的最小值.18.在中,分別是所對的邊,若的面積是,,.求的長.19.已知函數(shù)(1)求函數(shù)的最大值,以及取到最大值時所對應(yīng)的的集合;(2)在上恒成立,求實數(shù)的取值范圍.20.中,角的對邊分別為,且.(I)求的值;(II)求的值.21.近年來,我國自主研發(fā)的長征系列火箭的頻頻發(fā)射成功,標(biāo)志著我國在該領(lǐng)域已逐步達(dá)到世界一流水平.火箭推進劑的質(zhì)量為,去除推進劑后的火箭有效載荷質(zhì)量為,火箭的飛行速度為,初始速度為,已知其關(guān)系式為齊奧爾科夫斯基公式:,其中是火箭發(fā)動機噴流相對火箭的速度,假設(shè),,,是以為底的自然對數(shù),,.(1)如果希望火箭飛行速度分別達(dá)到第一宇宙速度、第二宇宙速度、第三宇宙速度時,求的值(精確到小數(shù)點后面1位).(2)如果希望達(dá)到,但火箭起飛質(zhì)量最大值為,請問的最小值為多少(精確到小數(shù)點后面1位)?由此指出其實際意義.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
由正弦定理求得,再求.【詳解】由正弦定理,∴,或,時,,時,.故選:B.【點睛】本題考查正弦定理,在用正弦定理解三角形時,可能會出現(xiàn)兩解,一定要注意.2、C【解析】
根據(jù)三角形滿足的兩個條件,設(shè)出三邊長分別為,三個角分別為,利用正弦定理列出關(guān)系式,根據(jù)二倍角的正弦函數(shù)公式化簡后,表示出,然后利用余弦定理得到,將表示出的代入,整理后得到關(guān)于的方程,求出方程的解得到的值,【詳解】解:設(shè)三角形三邊是連續(xù)的三個自然,三個角分別為,
由正弦定理可得:,
,
再由余弦定理可得:,
化簡可得:,解得:或(舍去),
∴,故三角形的三邊長分別為:,故選:C.【點睛】此題考查了正弦、余弦定理,以及二倍角的正弦函數(shù)公式,正弦、余弦定理很好的建立了三角形的邊角關(guān)系,熟練掌握定理是解本題的關(guān)鍵,屬于中檔題.3、D【解析】
在的終邊上取點,然后根據(jù)三角函數(shù)的定義可求得答案.【詳解】在的終邊上取點,則,根據(jù)三角形函數(shù)的定義得.故選:D【點睛】本題考查了利用角的終邊上的點的坐標(biāo)求三角函數(shù)值,屬于基礎(chǔ)題.4、D【解析】
分離常數(shù)法化簡f(x),根據(jù)新定義即可求得函數(shù)y=[f(x)]的值域.【詳解】,又>0,∴,∴∴當(dāng)x∈(1,1)時,y=[f(x)]=1;當(dāng)x∈[1,)時,y=[f(x)]=1.∴函數(shù)y=[f(x)]的值域是{1,1}.故選D.【點睛】本題考查了新定義的理解和應(yīng)用,考查了分離常數(shù)法求一次分式函數(shù)的值域,是中檔題.5、A【解析】
利用分離常數(shù)法得出不等式在上成立,根據(jù)函數(shù)在上的單調(diào)性,求出的取值范圍【詳解】關(guān)于的不等式在區(qū)間上有解在上有解即在上成立,設(shè)函數(shù)數(shù),恒成立在上是單調(diào)減函數(shù)且的值域為要在上有解,則即的取值范圍是故選【點睛】本題是一道關(guān)于一元二次不等式的題目,解題的關(guān)鍵是掌握一元二次不等式的解法,分離含參量,然后求出結(jié)果,屬于基礎(chǔ)題.6、A【解析】
由的體積計算得高,已知將三棱錐的外接球,轉(zhuǎn)化為長2,寬2,高的長方體的外接球,求出半徑,可得答案.【詳解】∵,,故三棱錐的底面面積為,由平面,得,又三棱錐的體積為,得,所以三棱錐的外接球,相當(dāng)于長2,寬2,高的長方體的外接球,故球半徑,得,故外接球的體積.故選:A.【點睛】本題考查了三棱錐外接球的體積,三棱錐體積公式的應(yīng)用,根據(jù)已知計算出球的半徑是解答的關(guān)鍵,屬于中檔題.7、D【解析】
利用平面向量垂直的坐標(biāo)等價條件列等式求出實數(shù)的值.【詳解】,,,,解得,故選D.【點睛】本題考查向量垂直的坐標(biāo)表示,解題時將向量垂直轉(zhuǎn)化為兩向量的數(shù)量積為零來處理,考查計算能力,屬于基礎(chǔ)題.8、C【解析】試題分析:由三視圖可知,幾何體是三棱柱消去一個同底的三棱錐,如圖所示,三棱柱的高為5,消去的三棱錐的高為3,三棱錐與三棱柱的底面為直角邊長分別為3和4的直角三角形,所以幾何體的體積為V=1考點:幾何體的三視圖及體積的計算.【方法點晴】本題主要考查了幾何體的三視圖的應(yīng)用及體積的計算,著重考查了推理和運算能力及空間想象能力,屬于中檔試題,解答此類問題的關(guān)鍵是根據(jù)三視圖的規(guī)則“長對正、寬相等、高平齊”的原則,還原出原幾何體的形狀,本題的解答的難點在于根據(jù)幾何體的三視圖還原出原幾何體和幾何體的度量關(guān)系,屬于中檔試題.9、D【解析】
求出陰影部分的面積,然后與圓面積作比值即得.【詳解】圓被8等分,其中陰影部分有3分,因此所求概率為P=3故選D.【點睛】本題考查幾何概型,屬于基礎(chǔ)題.10、C【解析】
試題分析:兩個平面垂直,一個平面內(nèi)的直線不一定垂直于另一個平面,所以A不正確;兩個相交平面內(nèi)的直線也可以平行,所以B不正確;垂直于同一個平面的兩個平面不一定垂直,也可能平行或相交,所以D不正確;根據(jù)面面垂直的判定定理知C正確.考點:空間直線、平面間的位置關(guān)系.【詳解】請在此輸入詳解!二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】不妨設(shè)a>1,
則令f(x)=|loga|x-1||=b>0,
則loga|x-1|=b或loga|x-1|=-b;
故x1=-ab+1,x2=-a-b+1,x3=a-b+1,x4=ab+1,
故故答案為2點睛:本題考查了絕對值方程及對數(shù)運算的應(yīng)用,同時考查了指數(shù)的運算,注意計算的準(zhǔn)確性.12、1【解析】考查向量的投影定義,在上的投影等于的模乘以兩向量夾角的余弦值13、1.98.【解析】
本題考查通過統(tǒng)計數(shù)據(jù)進行概率的估計,采取估算法,利用概率思想解題.【詳解】由題意得,經(jīng)停該高鐵站的列車正點數(shù)約為,其中高鐵個數(shù)為11+21+11=41,所以該站所有高鐵平均正點率約為.【點睛】本題考點為概率統(tǒng)計,滲透了數(shù)據(jù)處理和數(shù)學(xué)運算素養(yǎng).側(cè)重統(tǒng)計數(shù)據(jù)的概率估算,難度不大.易忽視概率的估算值不是精確值而失誤,根據(jù)分類抽樣的統(tǒng)計數(shù)據(jù),估算出正點列車數(shù)量與列車總數(shù)的比值.14、85【解析】
按照莖葉圖,將這組數(shù)據(jù)按照從小到大的順序排列,找出中間的一個數(shù)即可.【詳解】按照莖葉圖,這組數(shù)據(jù)是79,83,84,85,87,92,93.把這組數(shù)據(jù)按照從小到大的順序排列,最中間一個是85.所以中位數(shù)為85.故答案為:85【點睛】本題考查對莖葉圖的認(rèn)識.考查中位數(shù),屬于基礎(chǔ)題.15、【解析】
將寫成,切化弦后,利用兩角和差余弦公式可將原式化為,利用二倍角公式可變?yōu)?,由可化簡求得結(jié)果.【詳解】本題正確結(jié)果:【點睛】本題考查利用三角恒等變換公式進行化簡求值的問題,涉及到兩角和差余弦公式、二倍角公式的應(yīng)用.16、【解析】
由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因為,,所以,所以,在中,由正弦定理得,所以.【點睛】本題考查正弦定理解三角形,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用零點討論法解絕對值不等式;(2)利用絕對值三角不等式得到a+b=2,再利用基本不等式求的最小值.【詳解】(1)當(dāng),時,,得或或,解得:,∴不等式的解集為.(2),∴,∴,當(dāng)且僅當(dāng),時取等號.∴的最小值為.【點睛】本題主要考查零點討論法解絕對值不等式,考查絕對值三角不等式和基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.18、8【解析】
利用同角三角函數(shù)的基本關(guān)系式求得,利用三角形的面積公式列方程求得,結(jié)合求得,根據(jù)余弦定理求得的長.【詳解】由()得.因為的面積是,則,所以由解得.由余弦定理得,即的長是.【點睛】本小題主要考查同角三角函數(shù)的基本關(guān)系式,考查三角形的面積公式,考查余弦定理解三角形.19、,,;(2)【解析】
(1).此時,(2),,即,.,,且,,即的取值范圍是.20、(1);(2)5【解析】試題分析:(1)依題意,利用正弦定理及二倍角的正弦即可求得cosA的值;(2)易求sinA=,sinB=,從而利用兩角和的正弦可求得sin(A+B)=,在△ABC中,此即sinC的值,利用正弦定理可求得c的值.試題解析:(1)由正弦定理可得,即:,∴,∴.(2由(1),且,∴,∴,∴==.由正弦定理可得:,∴.21、(1)(2)見解析【解析】
(1)弄清題意,將相關(guān)數(shù)據(jù)代入齊奧爾科夫斯基公式:,即可得出各個等級的速度對應(yīng)的的值;(2)弄清題意與相關(guān)名詞,火箭起飛質(zhì)量即為,將公式變形,分離出,解不等式即可得,的最小值為.【詳解】(1)由題意可得,,,且,,當(dāng)達(dá)到第一宇宙速度時,有,;當(dāng)達(dá)到第二宇宙
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 毛中特期末題庫及答案
- 鶴壁市事業(yè)單位考試真題附答案
- 幼兒園管理考試題及答案
- 阿里云秋招面試題及答案
- 2026自然語言處理工程師招聘面試題及答案
- 沖床鉆孔加工試題及答案
- 2026黑龍江哈爾濱啟航勞務(wù)派遣有限公司派遣到哈爾濱工業(yè)大學(xué)機電工程學(xué)院機械設(shè)計系招聘考試備考題庫附答案
- 中共南充市委社會工作部關(guān)于公開招聘南充市新興領(lǐng)域黨建工作專員的(6人)考試備考題庫附答案
- 中國科學(xué)院西北高原生物研究所2026年支撐崗位招聘1人(青海)備考題庫必考題
- 會昌縣2025年縣直事業(yè)單位公開選調(diào)一般工作人員考試備考題庫附答案
- 安全生產(chǎn)標(biāo)準(zhǔn)化對企業(yè)的影響安全生產(chǎn)
- 關(guān)于若干歷史問題的決議(1945年)
- 畢業(yè)論文8000字【6篇】
- 隨訪管理系統(tǒng)功能參數(shù)
- SH/T 0362-1996抗氨汽輪機油
- GB/T 23280-2009開式壓力機精度
- GB/T 17213.4-2015工業(yè)過程控制閥第4部分:檢驗和例行試驗
- FZ/T 73009-2021山羊絨針織品
- 珠海局B級安檢員資格考試試題及答案
- GB∕T 5900.2-2022 機床 主軸端部與卡盤連接尺寸 第2部分:凸輪鎖緊型
- 2011-2015廣汽豐田凱美瑞維修手冊wdl
評論
0/150
提交評論