誤差分析課件線性回歸及應(yīng)用_第1頁
誤差分析課件線性回歸及應(yīng)用_第2頁
誤差分析課件線性回歸及應(yīng)用_第3頁
誤差分析課件線性回歸及應(yīng)用_第4頁
誤差分析課件線性回歸及應(yīng)用_第5頁
已閱讀5頁,還剩46頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

誤差分析課件線性回歸及應(yīng)用第1頁,課件共51頁,創(chuàng)作于2023年2月線性回歸分析兩個變量之間的關(guān)系:1.函數(shù)關(guān)系---確定的關(guān)系2.相關(guān)關(guān)系---非確定的關(guān)系

(1)一個可控制,另一個不可控制(2)兩個變量都不可控制(隨機(jī))第2頁,課件共51頁,創(chuàng)作于2023年2月線性回歸分析3.回歸分析回歸分析就是通過對一定數(shù)量的觀測數(shù)據(jù)進(jìn)行統(tǒng)計處理,以找出變量間相互依賴的統(tǒng)計規(guī)律。例1-1:施肥量x1520253035404550產(chǎn)量y330345365405445450455465第3頁,課件共51頁,創(chuàng)作于2023年2月例1-1:為獲得施肥量與產(chǎn)量之間的輸入輸出關(guān)系,將測的那些實驗數(shù)據(jù)點標(biāo)在坐標(biāo)紙上,如下圖示

稱為散點圖。從散點圖上可看出產(chǎn)量y與施肥量x之間基本呈直線關(guān)系。20253035404550330345405365445第4頁,課件共51頁,創(chuàng)作于2023年2月1.1一元線性回歸一、一元線性回歸方程的求法一元線性回歸是處理隨機(jī)變量和變量之間線性相關(guān)關(guān)系的一種方法。一元線性回歸的數(shù)學(xué)模型為(1-1)式中,——待定常數(shù)和系數(shù);

——測量的隨機(jī)誤差。第5頁,課件共51頁,創(chuàng)作于2023年2月一元線性回歸方程的求法(Ⅰ)當(dāng)?shù)闹禐闀r,相應(yīng)有設(shè)測量誤差服從同一正態(tài)分布,且相互獨立,則用最小二乘法估計參數(shù),設(shè)估計量分別為,那么可得一元線性回歸方程(1-2)式中,為常數(shù)和回歸系數(shù)。第6頁,課件共51頁,創(chuàng)作于2023年2月一元線性回歸方程的求法(Ⅱ)某一觀測值與回歸值之差用表示它表示某一點與回歸直線的偏離程度。記(1-3)值的大小反映全部觀測值與回歸直線的偏離程度,應(yīng)使最小。根據(jù)最小二乘原理,有(1-4)(1-5)第7頁,課件共51頁,創(chuàng)作于2023年2月一元線性回歸方程的求法(Ⅲ)由以上兩式,經(jīng)推導(dǎo)整理可得式中,(1-11)(1-12)(1-13)第8頁,課件共51頁,創(chuàng)作于2023年2月一元線性回歸方程的求法(Ⅳ)至此,可確定一元線性回歸方程回歸直線方程的點斜式它表明回歸直線通過點,只須在數(shù)據(jù)域任取一點代入回歸方程,得到一點,則可由這兩點繪出回歸直線。第9頁,課件共51頁,創(chuàng)作于2023年2月例1-2(Ⅰ):例1-2:假如某大量程式位移傳感器的實測數(shù)據(jù)如下表所示,求輸出電壓與位移之間的關(guān)系。位移x/mm01234567輸出電壓y/V00.099890.199830.299940.400080.500250.600360.70039第10頁,課件共51頁,創(chuàng)作于2023年2月例1-2(Ⅰ):解:具體步驟如下1.變量之間大體呈線性關(guān)系,設(shè)它們滿足一元線性回歸方程令2.分別計算的值,填入表1-1中。3.對個列數(shù)據(jù)分別求和,列入表1-1的最后一行。4.計算第11頁,課件共51頁,創(chuàng)作于2023年2月例1-2(Ⅱ):5.計算6.列回歸方程第12頁,課件共51頁,創(chuàng)作于2023年2月二、回歸方程的方差分析和顯著性檢驗1.回歸方程的方差分析

N個觀測值之間的差異(稱離差),由兩個因素引起:一是由變量之間的線性依賴關(guān)系引起;二是由其他因素引起。測量值之間的變化程度可用總離差平方和表示,記為(1-14)第13頁,課件共51頁,創(chuàng)作于2023年2月1.回歸方程的方差分析把代入中間項,可推出則令有其中,稱為回歸平方和,反映回歸直線對均值的偏離情況,即隨變化產(chǎn)生的線性變化在總的離差平方和中所起的作用。稱為剩余平方和,反映測量值對回歸直線的偏離情況,即其他因素引起的的變化在總的離差平方和中所起的作用。第14頁,課件共51頁,創(chuàng)作于2023年2月2.回歸方程的顯著性檢驗為定量說明與的線性密切程度,通常用F檢驗法,即計算統(tǒng)計量(1-20)對一元線性回歸,有(1-21)計算和檢驗步驟:(1)由式(1-21)計算出F值。(2)根據(jù)給定的顯著性水平,從F分布表中查取臨界值。(3)比較計算得到的F值和查得的值。若則回歸效果顯著,否則效果不顯著。第15頁,課件共51頁,創(chuàng)作于2023年2月顯著性水平等級:通??煞譃橐韵聨准墸喝绻烧J(rèn)為回歸效果高度顯著,稱為在0.01水平上顯著,即可信賴程度為99%以上;如果可認(rèn)為回歸效果是顯著的,稱為在0.05水平上顯著,即可信賴程度在95%和99%之間;如果可認(rèn)為回歸效果不顯著,此時y對x的線性關(guān)系不密切。第16頁,課件共51頁,創(chuàng)作于2023年2月3.殘余方差與殘余標(biāo)準(zhǔn)差

殘余方差定義為

殘余標(biāo)準(zhǔn)差定義為它表明在單次測量中,由線性因素以外的其他因素引起的y的變化程度。越小,回歸直線的精度越高。第17頁,課件共51頁,創(chuàng)作于2023年2月例1-3試對例1-2中求出的回歸方程進(jìn)行顯著性檢驗。解:具體步驟如下(1)利用求,則有(2)計算第18頁,課件共51頁,創(chuàng)作于2023年2月例1-3(Ⅱ):(3)根據(jù)查表在級表中查得(4)判別故回歸效果高度顯著。(5)求剩余標(biāo)準(zhǔn)差第19頁,課件共51頁,創(chuàng)作于2023年2月1.2多元線性回歸一、多元線性回歸方程的一般求法設(shè)因變量與M個自變量的關(guān)系是線性相關(guān)的,且已獲得N組觀測數(shù)據(jù)則有如下結(jié)構(gòu)形式(1-29)式中是M+1個待估計參數(shù),是M個可精確測量的變量,是N個互相獨立且服從統(tǒng)一正態(tài)分布的隨機(jī)變量,這便是多元線性回歸的數(shù)學(xué)模型。第20頁,課件共51頁,創(chuàng)作于2023年2月一、多元線性回歸方程的一般求法設(shè)分別為參數(shù)的最小二乘估計,則可得回歸方程(1-30)最小二乘條件為正規(guī)方程為(1-31)第21頁,課件共51頁,創(chuàng)作于2023年2月正規(guī)方程的矩陣形式求解:

數(shù)學(xué)模型的矩陣形式對于方程組(1-31),系數(shù)矩陣是對稱的,用A表示X稱為數(shù)據(jù)的結(jié)構(gòu)矩陣。右邊的常數(shù)項用B表示則正規(guī)方程的矩陣形式為令,則方程組的解為問題歸結(jié)為計算下列四個矩陣第22頁,課件共51頁,創(chuàng)作于2023年2月二、多元線性回歸的顯著性檢驗和精度同一元線性回歸方程類似,有回歸平方和U表示M個自變量與的線性關(guān)系引起的變化在總的離差平方和S中所占的比重。及相應(yīng)計算如表1-2。F檢驗的數(shù)學(xué)統(tǒng)計量為如果則認(rèn)為所求回歸方程在水平上顯著。精度由剩余標(biāo)準(zhǔn)差來估計。第23頁,課件共51頁,創(chuàng)作于2023年2月三、每個自變量在多元線性回歸中

所起的作用1.自變量作用大小的衡量自變量在總的回歸中所起的作用可根據(jù)它在U中的影響大小來衡量。把取消一個自變量后回歸平方和減少的數(shù)值稱為對這個自變量的偏回歸平方和,記作一般偏回歸平方和的計算公式為式中,是正規(guī)方程系數(shù)矩陣A的逆矩陣C中的元素;是回歸方程的回歸系數(shù)。第24頁,課件共51頁,創(chuàng)作于2023年2月2.自變量作用大小的進(jìn)一步檢驗(1)凡是偏回歸平方和大的變量,一定是對有重要影響的因素。

回歸系數(shù)的顯著性檢驗當(dāng)時,認(rèn)為自變量對的影響在上顯著。(2)偏回歸平方和小的變量,不一定不顯著,但對最小的變量,如果即檢驗結(jié)果不顯著,則可將該變量剔除。第25頁,課件共51頁,創(chuàng)作于2023年2月3.剔除一個變量后回歸方程系數(shù)

的計算新回歸方程系數(shù)與原回歸方程系數(shù)之間有如下關(guān)系當(dāng)采用數(shù)學(xué)模型(1-32)時,不變。第26頁,課件共51頁,創(chuàng)作于2023年2月例1-4(Ⅰ):用某光柵式傳感器測工件尺寸,溫度t的變化和位移x的變化都對傳感器輸出電壓y產(chǎn)生影響,觀測數(shù)據(jù)如表1-3所示,試求三者的關(guān)系,并進(jìn)行顯著性檢驗。解:具體步驟如下(1)求第27頁,課件共51頁,創(chuàng)作于2023年2月例1-4(Ⅱ):(2)求出列入表1-4,并求出它們的和由表1-4可得(3)求第28頁,課件共51頁,創(chuàng)作于2023年2月例1-4(Ⅲ):(4)求二元線性回歸方程(5)進(jìn)行顯著性檢驗①求②檢驗所求二元回歸方程在0.01水平上顯著。第29頁,課件共51頁,創(chuàng)作于2023年2月例1-4(Ⅳ):(6)建立方差分析表剩余方差回歸方差可建立方差分析表1-5。第30頁,課件共51頁,創(chuàng)作于2023年2月應(yīng)用篇利用多元線性回歸方法預(yù)測我國的用電量第31頁,課件共51頁,創(chuàng)作于2023年2月背景介紹(Ⅰ)★中國經(jīng)濟(jì)高速發(fā)展,電力需求也在不斷增加?!?2年起電力需求飛速增長,引起全國電力供應(yīng)緊張。★電力供應(yīng)緊張的背后,說明對電力市場的預(yù)測出現(xiàn)了偏差。給中國經(jīng)濟(jì)社會發(fā)展帶來負(fù)面影響。★對中國未來電力需求進(jìn)行預(yù)測,經(jīng)濟(jì)合理地安排發(fā)電機(jī)組計劃,降低發(fā)電成本,保持電網(wǎng)運(yùn)行安全可靠,意義重大。第32頁,課件共51頁,創(chuàng)作于2023年2月背景介紹(Ⅱ)為了準(zhǔn)確預(yù)測用電量的負(fù)荷,發(fā)展了很多預(yù)測方法:★灰色預(yù)測法

樣本數(shù)據(jù)少,運(yùn)算方便,短期預(yù)測精度高;只適用于指數(shù)增長的模型★偏最小二乘回歸預(yù)測法模型精度高,穩(wěn)定、實用;計算復(fù)發(fā),需要專業(yè)的計算軟件★神經(jīng)網(wǎng)絡(luò)預(yù)測法是一種暗箱模型,結(jié)果不易解釋★線性回歸分析預(yù)測法模型簡單,預(yù)測結(jié)果準(zhǔn)確,模型解釋能力強(qiáng)。得到廣泛應(yīng)用第33頁,課件共51頁,創(chuàng)作于2023年2月多元線性回歸模型參數(shù)的選擇和建立1.1參數(shù)選擇因變量y--全社會用電量自變量x--GDP(x1)、人口總數(shù)(x2)建立模型的數(shù)據(jù)如表1-6所示

第34頁,課件共51頁,創(chuàng)作于2023年2月表1-6第35頁,課件共51頁,創(chuàng)作于2023年2月1.2模型建立和顯著性檢驗根據(jù)表中的數(shù)據(jù)及之前的線性回歸理論,得到回歸結(jié)果為:r方用于判定回歸直線的擬合度,上式中為0.97說明回歸直線擬合度很好。用F檢驗法對其顯著性檢驗,在a=0.01的顯著性水平下,說明回歸效果顯著,效果如下圖1-1所示。第36頁,課件共51頁,創(chuàng)作于2023年2月圖1-1回歸方程通過了顯著性檢驗,具有非常好的預(yù)測能力,只要計算出中國未來每年的GDP和人口數(shù),就可以通過回歸方程對用電量進(jìn)行預(yù)測。第37頁,課件共51頁,創(chuàng)作于2023年2月用電量的預(yù)測2.1GDP和人口預(yù)測在經(jīng)濟(jì)學(xué)上,GDP預(yù)測常用的經(jīng)濟(jì)模型為:a為GDP的增長速率(%)。人口預(yù)測用的經(jīng)濟(jì)模型為:K為人口自然增長速率第38頁,課件共51頁,創(chuàng)作于2023年2月GDP和人口預(yù)測1998~2002中國GDP增長率和人口自然增長率為a=7.09%,k=7.66‰第39頁,課件共51頁,創(chuàng)作于2023年2月用電量預(yù)測取2002年的GDP和人口數(shù)作為預(yù)測的起始年基數(shù),預(yù)測結(jié)果如下表1-7所示:第40頁,課件共51頁,創(chuàng)作于2023年2月表1-7第41頁,課件共51頁,創(chuàng)作于2023年2月結(jié)論通過建立回歸模型,得到了中國年用電量與GDP和總?cè)丝跀?shù)的回歸模型,并通過了顯著性檢驗。所得的方程能夠用來預(yù)測中國的年用電量。這些預(yù)測的用電量能夠科學(xué)指導(dǎo)我國電力和經(jīng)濟(jì)政策的制定,為我國電力建設(shè)和社會發(fā)展規(guī)劃提供了定量的科學(xué)依據(jù)。第42頁,課件共51頁,創(chuàng)作于2023年2月謝謝!7/27/2023第43頁,課件共51頁,創(chuàng)作于2023年2月一元非線性回歸非線性關(guān)系的兩種解決方法:一種是通過變量代換,化曲線回歸問題為直線回歸問題,用一元線性回歸方程的方法對其求解;另一種是通過級數(shù)展開,把區(qū)縣函數(shù)變成多項式的形式,把解曲線回歸問題轉(zhuǎn)換成解多項式回歸問題。第44頁,課件共51頁,創(chuàng)作于2023年2月表1-1序號100000002110.099190.9919010.997100.991903220.199131.9913043.993203.996604330.299942.9994091.996401.991205440.400014.000101616.0064016.003206550.500255.002502525.0250125.012507660.600366.003603636.0432136.021601770.700397.003904949.0546249.0273021212.1007421.00740140140.11664140.05130第45頁,課件共51頁,創(chuàng)作于2023年2月表1-2來源平方和自由度方差F顯著性回歸剩余MN-M-1總和N-1第46頁,課件共51頁,創(chuàng)作于2023年2月表1-32020.52121.52222.52323.516

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論