中考數(shù)學(xué)復(fù)習(xí)專題動態(tài)型問題市公開課一等獎省課獲獎?wù)n件_第1頁
中考數(shù)學(xué)復(fù)習(xí)專題動態(tài)型問題市公開課一等獎省課獲獎?wù)n件_第2頁
中考數(shù)學(xué)復(fù)習(xí)專題動態(tài)型問題市公開課一等獎省課獲獎?wù)n件_第3頁
中考數(shù)學(xué)復(fù)習(xí)專題動態(tài)型問題市公開課一等獎省課獲獎?wù)n件_第4頁
中考數(shù)學(xué)復(fù)習(xí)專題動態(tài)型問題市公開課一等獎省課獲獎?wù)n件_第5頁
已閱讀5頁,還剩39頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

動態(tài)型問題第1頁一、中考專項(xiàng)詮釋所謂“動態(tài)型問題”是指題設(shè)圖形中存在一種或多種動點(diǎn),它們在線段、射線或弧線上運(yùn)動,或線、面按一定條件運(yùn)動一類開放性題目.處理此類問題關(guān)鍵是動中求靜,靈活利用有關(guān)數(shù)學(xué)知識處理問題.“動態(tài)型問題”題型繁多、題意創(chuàng)新,考查學(xué)生分析問題、處理問題能力,內(nèi)容包括空間觀念、應(yīng)用意識、推理能力等,是近幾年中考題熱點(diǎn)和難點(diǎn)。第2頁二、解題辦法(1)動中求靜:找出運(yùn)動過程中造成圖形本質(zhì)發(fā)生變化分界點(diǎn),由分界點(diǎn)確定區(qū)域(即分類思想),在界點(diǎn)間找共性(即為靜)。(2)以靜制動,在界點(diǎn)間選用代表,得出靜態(tài)圖形,從而建立數(shù)學(xué)模型求解,達(dá)成處理動態(tài)問題目標(biāo)。第3頁考點(diǎn)一:建立動點(diǎn)問題函數(shù)解析式(或函數(shù)圖像

)函數(shù)揭示了運(yùn)動變化過程中量與量之間變化規(guī)律,是初中數(shù)學(xué)主要內(nèi)容.動點(diǎn)問題反應(yīng)是一種函數(shù)思想,由于某一種點(diǎn)或某圖形有條件地運(yùn)動變化,引發(fā)未知量與已知量間一種變化關(guān)系,這種變化關(guān)系就是動點(diǎn)問題中函數(shù)關(guān)系第4頁例1(2023?蘭州)如圖,動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB運(yùn)動至點(diǎn)B后,立即按原路返回,點(diǎn)P在運(yùn)動過程中速度不變,則以點(diǎn)B為圓心,線段BP長為半徑圓面積S與點(diǎn)P運(yùn)動時(shí)間t函數(shù)圖象大體為()A. B.C. D.B定量分析辦法

第5頁對應(yīng)訓(xùn)練

1.(2023?白銀)如圖,⊙O圓心在定角∠α(0°<α<180°)角平分線上運(yùn)動,且⊙O與∠α兩邊相切,圖中陰影部分面積S有關(guān)⊙O半徑r(r>0)變化函數(shù)圖象大體是()A. B.C. D.C第6頁考點(diǎn)二:動態(tài)幾何型題目

第7頁(一)點(diǎn)動問題.

例2(2023?新疆)如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC中點(diǎn),若動點(diǎn)E以1cm/s速度從A點(diǎn)出發(fā),沿著A→B→A方向運(yùn)動,設(shè)E點(diǎn)運(yùn)動時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t值為()

A.2 B.2.5或3.5

C.3.5或4.5 D.2或3.5或4.5D注意:分類思想第8頁對應(yīng)訓(xùn)練

2.(2023?北京)如圖,點(diǎn)P是以O(shè)為圓心,AB為直徑半圓上動點(diǎn),AB=2.設(shè)弦AP長為x,△APO面積為y,則下列圖象中,能表達(dá)y與x函數(shù)關(guān)系圖象大體是()

A. B.C. D.A選用合適特殊位置,然后去解答是最為直接有效辦法

第9頁(二)線動問題

例3(2023?荊門)如右圖所示,已知等腰梯形ABCD,AD∥BC,若動直線l垂直于BC,且向右平移,設(shè)掃過陰影部分面積為S,BP為x,則S有關(guān)x函數(shù)圖象大體是()A. B.C. D.A注意:將過程提成幾個(gè)階段,依次分析各個(gè)階段得變化情況,進(jìn)而綜合可得整體得變化情況.第10頁對應(yīng)訓(xùn)練

3.(2023?永州)如圖所示,在矩形ABCD中,垂直于對角線BD直線l,從點(diǎn)B開始沿著線段BD勻速平移到D.設(shè)直線l被矩形所截線段EF長度為y,運(yùn)動時(shí)間為t,則y有關(guān)t函數(shù)大體圖象是()A. B.C. D.A第11頁(三)面動問題

例4(2023?牡丹江)如圖所示:邊長分別為1和2兩個(gè)正方形,其中一邊在同一水平線上,小正方形沿該水平線自左向右勻速穿過大正方形,設(shè)穿過時(shí)間為t,大正方形內(nèi)去掉小正方形后面積為s,那么s與t大體圖象應(yīng)為()A. B.C. D.A第12頁對應(yīng)訓(xùn)練

4.(2023?衡陽)如圖所示,半徑為1圓和邊長為3正方形在同一水平線上,圓沿該水平線從左向右勻速穿過正方形,設(shè)穿過時(shí)間為t,正方形除去圓部分面積為S(陰影部分),則S與t大體圖象為()A. B.C. D.A第13頁考點(diǎn)三:雙動點(diǎn)問題雙動點(diǎn)問題對同窗們獲取信息和處理信息能力要求更高高;解題時(shí)需要用運(yùn)動和變化眼光去觀測和研究問題,挖掘運(yùn)動、變化全過程,并尤其關(guān)注運(yùn)動與變化中不變量、不變關(guān)系或特殊關(guān)系,動中取靜,靜中求動

第14頁例5(2023?攀枝花)如圖,在平面直角坐標(biāo)系中,四邊形ABCD是梯形,AB∥CD,點(diǎn)B(10,0),C(7,4).直線l通過A,D兩點(diǎn),且sin∠DAB=.動點(diǎn)P在線段AB上從點(diǎn)A出發(fā)以每秒2個(gè)單位速度向點(diǎn)B運(yùn)動,同步動點(diǎn)Q從點(diǎn)B出發(fā)以每秒5個(gè)單位速度沿B→C→D方向向點(diǎn)D運(yùn)動,過點(diǎn)P作PM垂直于x軸,與折線A→D→C相交于點(diǎn)M,當(dāng)P,Q兩點(diǎn)中有一點(diǎn)達(dá)到終

點(diǎn)時(shí),另一點(diǎn)也隨之停頓運(yùn)動.設(shè)點(diǎn)P,Q運(yùn)動時(shí)間為t秒(t>0),△MPQ面積為S.

第15頁(1)點(diǎn)A坐標(biāo)為

,直線l解析式為

;

解:(1)∵C(7,4),AB∥CD,

∴D(0,4).

∵sin∠DAB=,

∴∠DAB=45°,

∴OA=OD=4,

∴A(-4,0).

設(shè)直線l解析式為:y=kx+b,則有

,

解得:k=1,b=4,

∴y=x+4.

∴點(diǎn)A坐標(biāo)為(-4,0),直線l解析式為:y=x+4.第16頁(2)試求點(diǎn)Q與點(diǎn)M相遇前S與t函數(shù)關(guān)系式,并寫出對應(yīng)t取值范圍;

(2)解答本問,需要弄清動點(diǎn)運(yùn)動過程:

①當(dāng)0<t≤1時(shí),②當(dāng)1<t≤2時(shí),③當(dāng)2<t<時(shí),(1)S=-5t2+14t;(2)S=-7t2+16t;

(3)S=-14t+32.

;

(1)S=-5t2+14t;(2)S=-7t2+16t;

(1)S=-5t2+14t;第17頁(3)試求(2)中當(dāng)t為何值時(shí),S值最大,并求出S最大值;①當(dāng)0<t≤1時(shí),②當(dāng)1<t≤2時(shí),③當(dāng)2<t<時(shí),(3)S=-14t+32.;(2)S=-7t2+16t;(1)S=-5t2+14t;(1)當(dāng)t=1時(shí),S有最大值,最大值為9;(2)當(dāng)t=時(shí),S有最大值,最大值為;(3)0<S<4

考查了指定區(qū)間上函數(shù)極值

第18頁(4)伴隨P,Q兩點(diǎn)運(yùn)動,當(dāng)點(diǎn)M在線段DC上運(yùn)動時(shí),設(shè)PM延長線與直線l相交于點(diǎn)N,試探究:當(dāng)t為何值時(shí),△QMN為等腰三角形?請直接寫出t值

如答圖4所示,點(diǎn)M在線段CD上,與Q相遇前時(shí),

MQ=CD-DM-CQ=7-(2t-4)-(5t-5)=16-7t,MN=DM=2t-4,

由MN=MQ,得16-7t=2t-4,解得t=第19頁當(dāng)點(diǎn)M在線段CD上,與Q相遇后時(shí),當(dāng)Q剛好運(yùn)動至終點(diǎn)D,

此時(shí)△QMN為等腰三角形,t=.

點(diǎn)評:本題是典型運(yùn)動型綜合題,難度較大,解題關(guān)鍵是對動點(diǎn)運(yùn)動過程有清楚理解.第(3)問中,考查了指定區(qū)間上函數(shù)極值,增加了試題難度;另外,分類討論思想貫通(2)-(4)問始終,同窗們需要認(rèn)真理解并純熟掌握.

第20頁對應(yīng)訓(xùn)練

5.(2023?武漢)如圖,E,F(xiàn)是正方形ABCD邊AD上兩個(gè)動點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形邊長為2,則線段DH長度最小值是

.第21頁>抓不變性:AH⊥BE常見幾何最值類型第22頁6(2023?長春)如圖①,在?ABCD中,AB=13,BC=50,BC邊上高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B-A-D-A運(yùn)動,沿B-A運(yùn)動時(shí)速度為每秒13個(gè)單位長度,沿A-D-A運(yùn)動時(shí)速度為每秒8個(gè)單位長度.點(diǎn)Q從點(diǎn)

B出發(fā)沿BC方向運(yùn)動,速度為每秒5個(gè)單位長度.P、Q兩點(diǎn)同步出發(fā),當(dāng)點(diǎn)Q達(dá)到點(diǎn)C時(shí),P、Q兩點(diǎn)同步停頓運(yùn)動.設(shè)點(diǎn)P運(yùn)動時(shí)間為t(秒).連結(jié)PQ.

1)當(dāng)點(diǎn)P沿A-D-A運(yùn)動時(shí),求AP長(用含t代數(shù)式表達(dá)).

第23頁(2)連結(jié)AQ,在點(diǎn)P沿B-A-D運(yùn)動過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ面積為S.求S與t之間函數(shù)關(guān)系式.

(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B-A-D運(yùn)動過程中,當(dāng)線段PQ掃過圖形(陰影部分)被線段BR提成面積相等兩部分時(shí)t值.

(4)設(shè)點(diǎn)C、D有關(guān)直線PQ對稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t值第24頁1)當(dāng)點(diǎn)P沿A-D-A運(yùn)動時(shí),求AP長(用含t代數(shù)式表達(dá)).

解:(1)當(dāng)點(diǎn)P沿A-D運(yùn)動時(shí),AP=8(t-1)=8t-8.

當(dāng)點(diǎn)P沿D-A運(yùn)動時(shí),AP=50×2-8(t-1)=108-8t.第25頁(2)連結(jié)AQ,在點(diǎn)P沿B-A-D運(yùn)動過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ面積為S.求S與t之間函數(shù)關(guān)系式.

當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),BP=AB,t=1.

當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),AP=AD,8t-8=50,t=.

當(dāng)0<t<1時(shí),如圖①.如何分類?第26頁<第27頁(3)過點(diǎn)Q作QR∥AB,交AD于點(diǎn)R,連結(jié)BR,如圖②.在點(diǎn)P沿B-A-D運(yùn)動過程中,當(dāng)線段PQ掃過圖形(陰影部分)被線段BR提成面積相等兩部分時(shí)t值

第28頁當(dāng)點(diǎn)P與點(diǎn)R重合時(shí),

AP=BQ,8t-8=5t,t=.

當(dāng)0<t≤1時(shí),如圖③.∵S△BPM=S△BQM,

∴PM=QM.

∵AB∥QR,

∴∠PBM=∠QRM,∠BPM=∠MQR在△BPM和△RQM中∴△BPM≌△RQM.

∴BP=RQ,

∵RQ=AB,

∴BP=AB

∴13t=13,

解得:t=1

第29頁≤第30頁≤∵S△ABR=S△QBR,

∴S△ABR<S四邊形BQPR.

∴BR不能把四邊形ABQP提成面積相等兩部分.

綜上所述,當(dāng)t=1或時(shí),線段PQ掃過圖形(陰影部分)被線段BR提成面積相等兩部分.

第31頁(4)設(shè)點(diǎn)C、D有關(guān)直線PQ對稱點(diǎn)分別為C′、D′,直接寫出C′D′∥BC時(shí)t值.

如圖⑥,當(dāng)P在A-D之間或D-A之間時(shí),C′D′在BC上方且C′D′∥BC時(shí)∴∠C′OQ=∠OQC.

∵△C′OQ≌△COQ,

∴∠C′OQ=∠COQ,

∴∠CQO=∠COQ,

∴QC=OC,

∴50-5t=50-8(t-1)+13,或50-5t=8(t-1)-50+13第32頁當(dāng)P在A-D之間或D-A之間,C′D′在BC下方且C′D′∥BC時(shí),如圖⑦.同理由菱形性質(zhì)能夠得出:OD=PD,

∴50-5t+13=8(t-1)-50,

點(diǎn)C、D有關(guān)直線PQ對稱點(diǎn)分別為C′、D′,且C′D′∥BC第33頁7.(2023?連云港)如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A、B坐標(biāo)分別為(8,0)、(0,6).動點(diǎn)Q從點(diǎn)O、動點(diǎn)P從點(diǎn)A同步出發(fā),分別沿著OA方向、AB方向均以1個(gè)單位長度/秒速度勻速運(yùn)動,運(yùn)動時(shí)間為t(秒)(0<t≤5).以P為圓心,PA長為半徑⊙P與AB、OA另一種交點(diǎn)

分別為C、D,連接CD、

QC.

第34頁(1)求當(dāng)t為何值時(shí),點(diǎn)Q與點(diǎn)D重合?∴cos∠BAO=sin∠BAO=.

∵AC為⊙P直徑,

∴△ACD為直角三角形.

∴AD=AC?cos∠BAO=2t×=t.

當(dāng)點(diǎn)Q與點(diǎn)D重合時(shí),OQ+AD=OA,

即:t+t=8,解得:t=.

∴t=(秒)時(shí),點(diǎn)Q與點(diǎn)D重合.解:(1)∵A(8,0),B(0,6),

∴OA=8,OB=6,∴AB=10,第35頁(2)設(shè)△QCD面積為S,試求S與t之間函數(shù)關(guān)系式,并求S最大值;≤第36頁(3)若⊙P與線段QC只有一種交點(diǎn),請直接寫出t取值范圍≤≤第37頁考點(diǎn)四:三動點(diǎn)問題

例(2023?遵義)如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點(diǎn)M,N從點(diǎn)C同步出發(fā),均以每秒1cm速度分別沿CA、CB向終點(diǎn)A,B移動,同步動點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm速度

沿BA向終點(diǎn)A移動,連

接PM,PN,設(shè)移動時(shí)間

為t(單位:秒,0<t<2.5).

.第38頁(1)當(dāng)t為何值時(shí),以A,P,M為頂點(diǎn)三角形與△ABC相同?

分兩種情況:

①當(dāng)△AMP∽△ABC時(shí),②當(dāng)△APM∽△ABC時(shí)

解得t=;

解得t=0(不合題意,舍去);

第39頁(2)是否存在某一時(shí)刻t,使四邊形APNC面積

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論