2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第1頁
2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第2頁
2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第3頁
2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第4頁
2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆平頂山市重點中學(xué)數(shù)學(xué)九上期末復(fù)習(xí)檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如圖,將圖形用放大鏡放大,應(yīng)該屬于().A.平移變換 B.相似變換 C.旋轉(zhuǎn)變換 D.對稱變換2.在奔馳、寶馬、豐田、三菱等汽車標(biāo)志圖形中,為中心對稱圖形的是()A.B.C.D.3.如圖,動點A在拋物線y=-x2+2x+3(0≤x≤3)上運動,直線l經(jīng)過點(0,6),且與y軸垂直,過點A作AC⊥l于點C,以AC為對角線作矩形ABCD,則另一對角線BD的取值范圍正確的是()A.2≤BD≤3 B.3≤BD≤6 C.1≤BD≤6 D.2≤BD≤64.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是()A. B. C. D.5.如圖是由6個完全相同的小正方體組成的幾何體,其俯視圖為()A. B. C. D.6.如圖,一次函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A,B兩點,點P在以C(﹣2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最大值為,則k的值為()A. B. C. D.7.若關(guān)于x的一元一次不等式組的解集是xa,且關(guān)于y的分式方程有非負整數(shù)解,則符合條件的所有整數(shù)a的和為()A.0 B.1 C.4 D.68.在一個不透明的口袋中裝有個完全相同的小球,把它們分別標(biāo)號為,從中隨機摸出一個小球,其標(biāo)號小于的概率為()A. B. C. D.9.以原點為中心,把點逆時針旋轉(zhuǎn),得點,則點坐標(biāo)是()A. B. C. D.10.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.11.如圖,是的直徑,,是上的兩點,且平分,分別與,相交于點,,則下列結(jié)論不一定成立的是()A. B. C. D.12.已知扇形的圓心角為60°,半徑為1,則扇形的弧長為()A. B.π C. D.二、填空題(每題4分,共24分)13.如圖,有一張直徑為1.2米的圓桌,其高度為0.8米,同時有一盞燈距地面2米,圓桌在水平地面上的影子是,∥,和是光線,建立如圖所示的平面直角坐標(biāo)系,其中點的坐標(biāo)是.那么點的坐標(biāo)是_________.14.若方程x2﹣2x﹣1009=0有一個根是α,則2α2﹣4α+1的值為_____.15.如圖,圓形紙片⊙O半徑為5,先在其內(nèi)剪出一個最大正方形,再在剩余部分剪出4個最大的小正方形,則4個小正方形的面積和為_______.16.方程的解是.17.點A(a,3)與點B(﹣4,b)關(guān)于原點對稱,則a+b=_____.18.二次函數(shù)y=x2-2x+2圖像的頂點坐標(biāo)是______.三、解答題(共78分)19.(8分)甲口袋中裝有2個小球,它們分別標(biāo)有數(shù)字1、2,乙口袋中裝有3個小球,它們分別標(biāo)有數(shù)字3、4、現(xiàn)分別從甲、乙兩個口袋中隨機地各取出1個小球,請你用列舉法畫樹狀圖或列表的方法求取出的兩個小球上的數(shù)字之和為5的概率.20.(8分)如圖,以等腰△ABC的一腰AC為直徑作⊙O,交底邊BC于點D,過點D作腰AB的垂線,垂足為E,交AC的延長線于點F.(1)求證:EF是⊙O的切線;(2)證明:∠CAD=∠CDF;(3)若∠F=30°,AD=,求⊙O的面積.21.(8分)在平面直角坐標(biāo)系中(如圖),已知二次函數(shù)(其中a、b、c是常數(shù),且a≠0)的圖像經(jīng)過點A(0,-3)、B(1,0)、C(3,0),聯(lián)結(jié)AB、AC.(1)求這個二次函數(shù)的解析式;(2)點D是線段AC上的一點,聯(lián)結(jié)BD,如果,求tan∠DBC的值;(3)如果點E在該二次函數(shù)圖像的對稱軸上,當(dāng)AC平分∠BAE時,求點E的坐標(biāo).22.(10分)如圖,在中,,分別是,上的點,且,連接,,.(1)求證:四邊形是平行四邊形;(2)若平分,,,,求的長.23.(10分)某游樂園有一個直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處回合,如圖所示,以水平方向為軸,噴水池中心為原點建立平面直角坐標(biāo)系.(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達式;(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時必須在離水池中心多少米以內(nèi)?24.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與邊BC,AC分別交于D,E兩點,過點D作DH⊥AC于點H.(1)求證:BD=CD;(2)連結(jié)OD若四邊形AODE為菱形,BC=8,求DH的長.25.(12分)如圖,已知AB為⊙O的直徑,點C、D在⊙O上,CD=BD,E、F是線段AC、AB的延長線上的點,并且EF與⊙O相切于點D.(1)求證:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的長.26.已知:如圖,在△ABC中,AD是∠BAC的平分線,∠ADE=∠B.求證:(1)△ABD∽△ADE;(2)AD2=AE?AB.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)放大鏡成像的特點,結(jié)合各變換的特點即可得出答案.【題目詳解】解:根據(jù)相似圖形的定義知,用放大鏡將圖形放大,屬于圖形的形狀相同,大小不相同,所以屬于相似變換.故選B.【題目點撥】本題考查的是相似形的識別,關(guān)鍵要聯(lián)系圖形,根據(jù)相似圖形的定義得出.2、B【解題分析】試題分析:根據(jù)中心對稱圖形的概念,A、C、D都不是中心對稱圖形,是中心對稱圖形的只有B.故選B.考點:中心對稱圖形3、D【分析】根據(jù)題意先利用配方法得到拋物線的頂點坐標(biāo)為(1,4),再根據(jù)矩形的性質(zhì)得BD=AC,由于2≤AC≤1,從而進行分析得到BD的取值范圍.【題目詳解】解:∵,∴拋物線開口向下,頂點坐標(biāo)為(1,4),∵四邊形ABCD為矩形,∴BD=AC,∵直線l經(jīng)過點(0,1),且與y軸垂直,拋物線y=-x2+2x+3(0≤x≤3),∴2≤AC≤1,∴另一對角線BD的取值范圍為:2≤BD≤1.故選:D.【題目點撥】本題考查矩形的性質(zhì)與二次函數(shù)圖象上點的坐標(biāo)特征,注意掌握二次函數(shù)圖象上點的坐標(biāo)滿足其解析式.4、C【解題分析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.5、B【分析】根據(jù)從上面看到的圖形即為俯視圖進一步分析判斷即可.【題目詳解】從上面看第一排是三個小正方形,第二排右邊是一個小正方形,故選:B.【題目點撥】本題主要考查了三視圖的判斷,熟練掌握相關(guān)方法是解題關(guān)鍵.6、C【解題分析】如圖,連接BP,由反比例函數(shù)的對稱性質(zhì)以及三角形中位線定理可得OQ=BP,再根據(jù)OQ的最大值從而可確定出BP長的最大值,由題意可知當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,繼而根據(jù)正比例函數(shù)的性質(zhì)以及勾股定理可求得點B坐標(biāo),再根據(jù)點B在反比例函數(shù)y=(k>0)的圖象上,利用待定系數(shù)法即可求出k的值.【題目詳解】如圖,連接BP,由對稱性得:OA=OB,∵Q是AP的中點,∴OQ=BP,∵OQ長的最大值為,∴BP長的最大值為×2=3,如圖,當(dāng)BP過圓心C時,BP最長,過B作BD⊥x軸于D,∵CP=1,∴BC=2,∵B在直線y=2x上,設(shè)B(t,2t),則CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,∴22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣,∴B(﹣,﹣),∵點B在反比例函數(shù)y=(k>0)的圖象上,∴k=﹣×(-)=,故選C.【題目點撥】本題考查的是代數(shù)與幾何綜合題,涉及了反比例函數(shù)圖象上點的坐標(biāo)特征,中位線定理,圓的基本性質(zhì)等,綜合性較強,有一定的難度,正確添加輔助線,確定出BP過點C時OQ有最大值是解題的關(guān)鍵.7、B【解題分析】先解關(guān)于x的一元一次不等式組,再根據(jù)其解集是x≤a,得a小于5;再解分式方程,根據(jù)其有非負整數(shù)解,同時考慮增根的情況,得出a的值,再求和即可.【題目詳解】解:由不等式組,解得:∵解集是x≤a,∴a<5;由關(guān)于的分式方程得得2y-a+y-4=y-1又∵非負整數(shù)解,∴a≥-3,且a=-3,a=-1(舍,此時分式方程為增根),a=1,a=3它們的和為1.故選:B.【題目點撥】本題綜合考查了含參一元一次不等式,含參分式方程的問題,需要考慮的因素較多,屬于易錯題.8、C【分析】直接利用概率公式求解即可求得答案.【題目詳解】解:∵在一個不透明的口袋中裝有5個完全相同的小球,把它們分別標(biāo)號為1,2,3,4,5,

其中小于的3個,∴從中隨機摸出一個小球,其標(biāo)號小于4的概率為:故選:C.【題目點撥】此題考查了概率公式的應(yīng)用.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【分析】畫出圖形,利用圖象法即可解決問題.【題目詳解】觀察圖象可知B(-5,4),故選B.【題目點撥】本題考查坐標(biāo)與圖形變化-旋轉(zhuǎn),解題的關(guān)鍵是理解題意,靈活運用所學(xué)知識解決問題10、C【分析】由∠A是公共角,利用有兩角對應(yīng)相等的三角形相似,即可得A與B正確;又由兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應(yīng)用.【題目詳解】∵∠A是公共角,∴當(dāng)∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應(yīng)相等的三角形相似),故A與B正確,不符合題意要求;當(dāng)AB:AD=AC:AB時,△ADB∽△ABC(兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.11、C【分析】由圓周角定理和角平分線得出,,由等腰三角形的性質(zhì)得出,得出,證出,選項A成立;由平行線的性質(zhì)得出,選項B成立;由垂徑定理得出,選項D成立;和中,沒有相等的邊,與不全等,選項C不成立,即可得出答案.【題目詳解】∵是的直徑,平分,∴,,∴,∵,∴,∴,∴,選項A成立;∴,選項B成立;∴,選項D成立;∵和中,沒有相等的邊,∴與不全等,選項C不成立,故選C.【題目點撥】本題考查了圓周角定理,垂徑定理,等腰三角形的性質(zhì),平行線的性質(zhì),角平分線的性質(zhì),解本題的關(guān)鍵是熟練掌圓周角定理和垂徑定理.12、D【解題分析】試題分析:根據(jù)弧長公式知:扇形的弧長為.故選D.考點:弧長公式.二、填空題(每題4分,共24分)13、【分析】先證明△ABC∽△ADE,再根據(jù)相似三角形的性質(zhì):相似三角形的對應(yīng)高的比等于相似比求解即可.【題目詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.2,∴DE=2,∴E(4,0).故答案為:(4,0).【題目點撥】本題考查了中心投影,相似三角形的判定和性質(zhì),準(zhǔn)確識圖,熟練掌握相似三角形的對應(yīng)高的比等于相似比是解題的關(guān)鍵.14、1【分析】先利用一元二次方程根的定義得到α2﹣2α=1009,然后求出2α2﹣4α的值代入即可.【題目詳解】解:方程x2﹣2x﹣1009=0有一個根是α,則α2﹣2α﹣1009=0,α2﹣2α=1009,2α2﹣4α+1=2(α2﹣2α)+1=1.故答案為:1.【題目點撥】本題考查了一元二次方程的解:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.15、16【分析】根據(jù)題意可知四個小正方形的面積相等,構(gòu)造出直角△OAB,設(shè)小正方形的面積為x,根據(jù)勾股定理求出x值即可得到小正方形的邊長,從而算出4個小正方形的面積和.【題目詳解】解:如圖,點A為上面小正方形邊的中點,點B為小正方形與圓的交點,D為小正方形和大正方形重合邊的中點,由題意可知:四個小正方形全等,且△OCD為等腰直角三角形,∵⊙O半徑為5,根據(jù)垂徑定理得:∴OD=CD==5,設(shè)小正方形的邊長為x,則AB=,則在直角△OAB中,OA2+AB2=OB2,即,解得x=2,∴四個小正方形的面積和=.故答案為:16.【題目點撥】本題考查了垂徑定理、勾股定理、正方形的性質(zhì),熟練掌握利用勾股定理解直角三角形是解題的關(guān)鍵.16、【解題分析】解:,.17、1.【解題分析】試題分析:根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),則a=4,b=-3,從而得出a+b.試題解析:根據(jù)平面內(nèi)兩點關(guān)于關(guān)于原點對稱的點,橫坐標(biāo)與縱坐標(biāo)都互為相反數(shù),∴a=4且b=-3,∴a+b=1.考點:關(guān)于原點對稱的點的坐標(biāo).18、(1,1)【解題分析】分析:把二次函數(shù)解析式轉(zhuǎn)化成頂點式形式,然后寫出頂點坐標(biāo)即可.詳解:∵∴頂點坐標(biāo)為(1,1).故答案為:(1,1).點睛:考查二次函數(shù)的性質(zhì),熟練掌握配方法是解題的關(guān)鍵.三、解答題(共78分)19、【解題分析】用樹狀圖列舉出所有情況,看兩個小球上的數(shù)字之和為5的情況數(shù)占總情況數(shù)的多少即可.【題目詳解】解:樹狀圖如下:共有6種等可能的結(jié)果,.20、(1)見解析;(2)見解析;(3)π【分析】(1)連接OD,AD,證點D是BC的中點,由三角形中位線定理證OD∥AB,可推出∠ODF=90°,即可得到結(jié)論;(2)由OD=OC得到∠ODC=∠OCD,由∠CAD+∠OCD=90°和∠CDF+∠ODC=90°即可推出∠CAD=∠CDF;(3)由∠F=30°得到∠DOC=60°,推出∠DAC=30°,在Rt△ADC中,由銳角三角函數(shù)可求出AC的長,推出⊙O的半徑,即可求出⊙O的面積.【題目詳解】解:(1)證明:如圖,連接OD,AD,∵AC是直徑,∴∠ADC=90°,即AD⊥BC,又AB=AC,∴BD=CD,又AO=CO,∴OD∥AB,又FE⊥AB,∴FE⊥OD,∴EF是⊙O的切線;(2)∵OD=OC,∴∠ODC=∠OCD,∵∠ADC=∠ODF=90°,∴∠CAD+∠OCD=90°,∠CDF+∠ODC=90°,∴∠CAD=∠CDF;(3)在Rt△ODF中,∠F=30°,∴∠DOC=90°﹣30°=60°,∵OA=OD,∴∠OAD=∠ODA=∠DOC=30°,在Rt△ADC中,AC===2,∴r=1,∴S⊙O=π?12=π,∴⊙O的面積為π.【題目點撥】本題考查了圓的有關(guān)性質(zhì),切線的判定與性質(zhì),解直角三角形等,解題關(guān)鍵是能夠根據(jù)題意作出適當(dāng)?shù)妮o助線,并熟練掌握解直角三角形的方法.21、(1);(2);(3)E(2,)【分析】(1)直接利用待定系數(shù)法,把A、B、C三點代入解析式,即可得到答案;(2)過點D作DH⊥BC于H,在△ABC中,設(shè)AC邊上的高為h,利用面積的比得到,然后求出DH和BH,即可得到答案;(3)延長AE至x軸,與x軸交于點F,先證明△OAB∽△OFA,求出點F的坐標(biāo),然后求出直線AF的方程,即可求出點E的坐標(biāo).【題目詳解】解:(1)將A(0,-3)、B(1,0)、C(3,0)代入得,解得,∴此拋物線的表達式是:.(2)過點D作DH⊥BC于H,在△ABC中,設(shè)AC邊上的高為h,則,又∵DH//y軸,∴.∵OA=OC=3,則∠ACO=45°,∴△CDH為等腰直角三角形,∴.∴.∴tan∠DBC=.(3)延長AE至x軸,與x軸交于點F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC∠BAC=45°∠BAC,∠OFA=∠OCA∠FAC=45°∠FAC,∵∠BAC=∠FAC,∴∠OAB=∠OFA.∴△OAB∽△OFA,∴.∴OF=9,即F(9,0);設(shè)直線AF的解析式為y=kx+b(k≠0),可得,解得,∴直線AF的解析式為:,將x=2代入直線AF的解析式得:,∴E(2,).【題目點撥】本題考查了相似三角形的判定和性質(zhì),二次函數(shù)的性質(zhì),求二次函數(shù)的解析式,等腰直角三角形的判定和性質(zhì),求一次函數(shù)的解析式,解題的關(guān)鍵是掌握二次函數(shù)的圖像和性質(zhì),以及正確作出輔助線構(gòu)造相似三角形.22、(1)見解析;(2).【分析】(1)根據(jù)平行四邊形的性質(zhì)得到∠A=∠C,AD=CB,根據(jù)全等三角形的性質(zhì)和平行四邊形的判定定理即可得到結(jié)論;(2)根據(jù)平行線的性質(zhì)和角平分線的定義得到∠DAF=∠AFD,求得AD=DF,根據(jù)勾股定理的逆定理和勾股定理即可得到結(jié)論.【題目詳解】(1)證明:∵四邊形是平行四邊形,∴且.∵,∴,即,∴四邊形是平行四邊形.(2)解:∵,∴.∵平分,∴,∴,∴.∵四邊形是平行四邊形,∴,,∴.∵,,∴,∴.∵,∴,∴.【題目點撥】本題考查了全等三角形的判定和性質(zhì),平行四邊形的性質(zhì)和判定,勾股定理,矩形的性質(zhì)和判定的應(yīng)用,能綜合運用知識點進行推理是解此題的關(guān)鍵.23、(1);(2)王師傅必須在7米以內(nèi).【分析】(1)由拋物線的頂點坐標(biāo)為(3,5),設(shè)拋物線解析式為y=a(x-3)+5,把(8,0)單人寬求出a的值,即可得拋物線解析式;(2)把y=1.8代入解析式求出x的值,根據(jù)函數(shù)圖像的對稱性求出負半軸的坐標(biāo)即可.【題目詳解】(1)設(shè),過點∴代入,解得∴拋物線(第一象限部分)的函數(shù)表達式為(2)∴或-1,圖象對稱負半軸為-7答:王師傅必須在7米以內(nèi).【題目點撥】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是:(1)根據(jù)點的坐標(biāo),利用待定系數(shù)法求出二次函數(shù)表達式;(2)利用二次函數(shù)圖象上點的坐標(biāo)特征求出當(dāng)y=1.8時x的值.24、(1)見解析;(2)DH=2.【分析】(1)連接AD,根據(jù)直徑所對的圓周角是直角,即可求出∠ADB=90°,從而得出AD⊥BC,最后根據(jù)三線合一即可證出結(jié)論;(2)連接OE,根據(jù)菱形的性質(zhì)可得OA=OE=AE,從而證出△AOE是等邊三角形,從而得出∠A=60°,然后根據(jù)等邊三角形的判定即可證出△ABC是等邊三角形,從而求出∠C,根據(jù)(1)的結(jié)論即可求出CD,最后根據(jù)銳角三角函數(shù)即可求出DH.【題目詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論