版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
大數(shù)據(jù)時代下的商業(yè)智能大數(shù)據(jù)時代下的商業(yè)智能目錄BI行業(yè)的發(fā)展前景BI的歷史、現(xiàn)在和未來主要BI廠商傳統(tǒng)商業(yè)智能和未來商業(yè)智能的區(qū)別大數(shù)據(jù)與商業(yè)智能的結(jié)合大數(shù)據(jù)時代下的商業(yè)智能從全球范圍來看,商業(yè)智能(BI)已經(jīng)成為最具有前景的IT領(lǐng)域。2010年中國大陸地區(qū)的BI市場份額約為46億元人民幣,同比2009年增長27%BI的人才目前在IT行業(yè)并不是很多,
BI人員發(fā)展的機遇很大。BI行業(yè)的發(fā)展前景大數(shù)據(jù)時代下的商業(yè)智能BI從業(yè)人員的關(guān)注點設(shè)計、開發(fā)架構(gòu)、咨詢數(shù)據(jù)倉庫模型設(shè)計ETL設(shè)計、開發(fā)報表設(shè)計和開發(fā)對業(yè)務(wù)的理解數(shù)據(jù)架構(gòu)的思想案例關(guān)注點關(guān)注點數(shù)據(jù)倉庫模型設(shè)計ETL設(shè)計、開發(fā)對業(yè)務(wù)的理解數(shù)據(jù)倉庫的環(huán)境難點難點大數(shù)據(jù)時代下的商業(yè)智能
商業(yè)智能是從許多來自不同系統(tǒng)的數(shù)據(jù)中提取出有用的數(shù)據(jù),并進行清理,以保證數(shù)據(jù)的正確性,然后經(jīng)過抽取、轉(zhuǎn)換和裝載的過程,合并到一個企業(yè)級的數(shù)據(jù)倉庫里,從而得到企業(yè)數(shù)據(jù)的一個全局視圖。
在此基礎(chǔ)上利用合適的查詢和分析工具、數(shù)據(jù)挖掘工具、OLAP工具等對其進行分析和處理,最后將知識呈現(xiàn)給管理者,為管理者的決策過程提供支持。商業(yè)智能的概念數(shù)據(jù)信息知識企業(yè)的利潤大數(shù)據(jù)時代下的商業(yè)智能
追本溯源,學(xué)界已公認(rèn),赫伯特·西蒙對決策支持系統(tǒng)的研究,是現(xiàn)代商業(yè)智能概念最早的源頭和起點。1970年,IBM的研究員埃德加·科德(EdgarCodd)發(fā)明了關(guān)系型數(shù)據(jù)庫。
1979年,一家以決策支持系統(tǒng)為已任,致力于構(gòu)建單獨的數(shù)據(jù)存儲結(jié)構(gòu)的公司Teradata誕生。1983年,該公司利用并行處理技術(shù)為美國富國銀行建立了第一個決策支持系統(tǒng)。1988年,為解決企業(yè)集成問題,IBM公司的研究員BarryDevlin和PaulMurphy創(chuàng)造性地提出一個新的術(shù)語:數(shù)據(jù)倉庫(DataWarehouse)
1992年,比爾.恩門(BillInmon)出版了《如何構(gòu)建數(shù)據(jù)倉庫》一書,他主張由頂至底的構(gòu)建方法,強調(diào)數(shù)據(jù)的一致性,拉開了數(shù)據(jù)倉庫真正得以大規(guī)模應(yīng)用的序幕。
1993年,拉爾夫.金博爾出版了《數(shù)據(jù)倉庫的工具》一書,他主張務(wù)實的數(shù)據(jù)倉庫應(yīng)該由下往上,從部門到企業(yè),并把部門的數(shù)據(jù)倉庫叫做“數(shù)據(jù)集市”。BI的歷史大數(shù)據(jù)時代下的商業(yè)智能經(jīng)歷一輪并購潮之后,BI廠商分為兩類,一類是綜合性BI提供商。例如IBM、Oracle、SAP和Microsoft等。另一類是專業(yè)化BI提供商,例如Teradata和SAS。
IBM在BI領(lǐng)域有許多發(fā)展,先后并購了Datastage,Cognos和SPSS,最近又提出了業(yè)務(wù)分析(BA)。
Oracle收購海波龍(Hyperion)之后,Oracle的BI排名大大提升,而BEA的中間件更是加強了Oracle的BI戰(zhàn)略。
SAP收購BusinessObjects之后,在BI產(chǎn)品的易用性上下足功夫。
Teradata精于數(shù)據(jù)倉庫技術(shù),而SAS在數(shù)據(jù)挖掘分析方面見長。BI的現(xiàn)在大數(shù)據(jù)時代下的商業(yè)智能IBM-DB2、DataStage、Cognos、SPSS,覆蓋BI全部領(lǐng)域
Oracle-Oracle、BIEE/Hyperion,覆蓋BI全部領(lǐng)域,數(shù)據(jù)挖掘有待加強
Microsoft-SQLServer,覆蓋BI全部領(lǐng)域,適合中小型企業(yè),性價比高
SAP-BusinessObjects、CrystalReports,主要是OLAP和報表領(lǐng)域
Informatica-Informatica,主要是數(shù)據(jù)集成領(lǐng)域
Teradata-Teradata,主要是數(shù)據(jù)倉庫領(lǐng)域
Sybase-SybaseIQ,主要是數(shù)據(jù)倉庫領(lǐng)域
SAS-SAS,數(shù)據(jù)挖掘領(lǐng)域領(lǐng)先主要BI廠商大數(shù)據(jù)時代下的商業(yè)智能BI工具在中國遇到的挑戰(zhàn)報表格式復(fù)雜中國是世界上報表最復(fù)雜的國家。中國的報表設(shè)計思想與西方不同,西方報表傾向于僅用一張報表說明一個問題,而中國的報表傾向于將盡可能多的問題集中在一張報表中,這種思路直接導(dǎo)致了中國報表的復(fù)雜格式數(shù)據(jù)量大中國是世界上人口最多的國家。以中國移動公司為例,僅我國一個省的用戶數(shù)量,就相當(dāng)于歐洲一個中等國家的人口,是真正的海量數(shù)據(jù)!我國很多BI系統(tǒng)的架構(gòu)和設(shè)計也不如外國,所以在性能上存在較大的差距。在外國,可能一個客戶分析應(yīng)用一兩分鐘就能出結(jié)果,但是在中國,可能就是要一兩個小時了。數(shù)據(jù)回寫中國是世界上對BI系統(tǒng)要求最奇特的國家。本來BI系統(tǒng)是以真實再現(xiàn)源數(shù)據(jù)為原則,但這個原則在中國遇到了難題,許多領(lǐng)導(dǎo)都提出了數(shù)據(jù)修改的需求,“報表里數(shù)字不好看,就要能改啊,這樣上級領(lǐng)導(dǎo)看著就好嘛!”目前Microsoft,OracleBIEE就是能滿足這樣要求的BI產(chǎn)品大數(shù)據(jù)時代下的商業(yè)智能傳統(tǒng)商業(yè)智能和未來商業(yè)智能的區(qū)別有一種觀點:預(yù)測未來分析歷史未來商業(yè)智能傳統(tǒng)商業(yè)智能大數(shù)據(jù)時代下的商業(yè)智能傳統(tǒng)商業(yè)智能的使用情況固定報表:目前中國市場上的商業(yè)智能應(yīng)用停留在這個層面,主要過程是通過ETL工具,將業(yè)務(wù)系統(tǒng)源數(shù)據(jù)抽取到數(shù)據(jù)倉庫中,在裝載到數(shù)據(jù)集市,建立模型,利用前端工具將數(shù)據(jù)展現(xiàn)出來。OLAP分析:生成OLAP多維模型,實現(xiàn)多指標(biāo)分析。數(shù)據(jù)挖掘:通過分析具體數(shù)據(jù),發(fā)現(xiàn)潛在的、有價值的信息,例如啤酒和尿布。分析應(yīng)用:與業(yè)務(wù)信息系統(tǒng)相結(jié)合。例如企業(yè)績效管理。大數(shù)據(jù)時代下的商業(yè)智能第一階段:查詢。第二階段:報表。第三階段:多維分析和統(tǒng)計分析。第四個階段:數(shù)據(jù)挖掘。傳統(tǒng)商業(yè)智能的幾個階段:未來商業(yè)智能的方向:建立實時動態(tài)數(shù)據(jù)倉庫。傳統(tǒng)數(shù)據(jù)倉庫是基于歷史數(shù)據(jù)分析,動態(tài)數(shù)據(jù)倉庫支持前端應(yīng)用,利用分析結(jié)果發(fā)起業(yè)務(wù)流程。(2)增加對非結(jié)構(gòu)化數(shù)據(jù)的處理
。(3)縮短響應(yīng)時間。大數(shù)據(jù)時代下的商業(yè)智能傳統(tǒng)商業(yè)智能和未來商業(yè)智能的區(qū)別BI傳統(tǒng)的過濾、上鉆、下鉆、比較等功能也難于滿足一些特殊企業(yè)用戶的分析要求。
如何來保證外部數(shù)據(jù)的準(zhǔn)確性、實時性和有效性是個重大問題。.在多媒體、智能手機和社交網(wǎng)站獲取的信息,我們正面臨著比以往任何時候都更多的數(shù)據(jù),傳統(tǒng)數(shù)據(jù)倉庫的性能已無法應(yīng)付龐大的信息,只有通過大數(shù)據(jù)(BigData)技術(shù)使我們能夠訪問和使用這些寶貴的、大規(guī)模數(shù)據(jù)集,以應(yīng)對越來越復(fù)雜的數(shù)據(jù)分析和更好的商業(yè)決策制定。大數(shù)據(jù)時代下的商業(yè)智能操作型商業(yè)智能。BI用戶群也會相應(yīng)地從現(xiàn)在的后臺管理決策層向前端業(yè)務(wù)操作型用戶延伸。2.交互式商業(yè)智能。預(yù)測、分?jǐn)?、假設(shè)模擬、數(shù)據(jù)挖掘等技術(shù)應(yīng)用將會越來越普遍。3.可視化商業(yè)智能。越來越多的用戶不再滿足于傳統(tǒng)的圖像展現(xiàn),而要求數(shù)據(jù)的進一步可視化。4.實時商業(yè)智能。由于BI應(yīng)用將向操作型發(fā)展的特點,也導(dǎo)致了用戶對BI應(yīng)用的實時性需求。5.移動商業(yè)智能。將原來人們依賴于電腦的商業(yè)智能搬到了手機或者黑莓上。6.SaaS商業(yè)智能。商業(yè)智能作為云計算,作為服務(wù)來使用。未來商業(yè)智能的發(fā)展大數(shù)據(jù)時代下的商業(yè)智能為了滿足未來商業(yè)智能的發(fā)展,應(yīng)該將大數(shù)據(jù)技術(shù)和商業(yè)智能技術(shù)結(jié)合起來大數(shù)據(jù)(BigData)是對你在數(shù)據(jù)倉庫技術(shù)中現(xiàn)有投資的補充主要的商業(yè)智能(BI)供應(yīng)商都宣布對大數(shù)據(jù)技術(shù)的支持,或在解決方案中使用大數(shù)據(jù)技術(shù)數(shù)據(jù)海洋中的大數(shù)據(jù)要做的事不僅要對大規(guī)模的信息運行分析而且也成為數(shù)據(jù)倉庫的一種來源大數(shù)據(jù)有益于大型分析以及長期的戰(zhàn)略方向大數(shù)據(jù)是傳統(tǒng)數(shù)據(jù)庫、數(shù)據(jù)倉庫、BI概念外延的擴展,手段的擴充,不存在取代的關(guān)系,也并不是互斥的關(guān)系大數(shù)據(jù)時代下的商業(yè)智能大數(shù)據(jù)與商業(yè)智能的結(jié)合例如,某位信用卡用戶月均刷卡10次,月均刷卡300元,每年平均打5次客服電話,但是從未投訴。那么按照這些信息,該客戶是一命滿意度較高,流失率很低的客戶。利用商業(yè)智能得出的結(jié)論真實情況該客戶多次打客服電話都沒有接通,客戶多次在微博和博客上進行抱怨還款不方便,客戶服務(wù)不好,所以該客戶的流失風(fēng)險很高。大數(shù)據(jù)時代下的商業(yè)智能大數(shù)據(jù)概念的提出最早提出“大數(shù)據(jù)”時代已經(jīng)到來的機構(gòu)是全球知名咨詢公司麥肯錫。2011年,麥肯錫出版了研究報告《大數(shù)據(jù):創(chuàng)新、競爭和生產(chǎn)力的下一個新領(lǐng)域》,產(chǎn)學(xué)研界對“大數(shù)據(jù)”的關(guān)注達(dá)到歷史性新高度。麥肯錫在研究報告中指出,數(shù)據(jù)已經(jīng)滲透到每一個行業(yè)和業(yè)務(wù)職能領(lǐng)域,逐漸成為重要的生產(chǎn)因素;而人們對于海量數(shù)據(jù)的運用將預(yù)示著新一波生產(chǎn)率增長和消費者盈余浪潮的到來。互聯(lián)網(wǎng)、移動互聯(lián)網(wǎng)、物聯(lián)網(wǎng)、云計算的快速興起以及移動智能終端的快速普及,正使得當(dāng)前人類社會的數(shù)據(jù)增長比以往任何一個時期都要快。越來越大、越來越快、越來越復(fù)雜,數(shù)據(jù)特性的演變和發(fā)展,催生了一個全新的概念——大數(shù)據(jù)。大數(shù)據(jù)時代下的商業(yè)智能結(jié)構(gòu)化數(shù)據(jù):存在于關(guān)系數(shù)據(jù)庫中,多年來一直主導(dǎo)著IT應(yīng)用;半結(jié)構(gòu)化數(shù)據(jù):包括電子郵件、文字處理文件以及大量發(fā)布在網(wǎng)絡(luò)上的新聞等,以內(nèi)容為基礎(chǔ),這也是谷歌和百度存在的理由;非結(jié)構(gòu)化數(shù)據(jù):廣泛存在于社交網(wǎng)絡(luò)、物聯(lián)網(wǎng)、電子商務(wù)之中。伴隨著社交網(wǎng)絡(luò)、移動計算和傳感器等新技術(shù)不斷產(chǎn)生,有報告稱,超過80%的數(shù)據(jù)屬于非結(jié)構(gòu)化數(shù)據(jù)。更廣的信息范圍新的數(shù)據(jù)與分析類型實時信息來自新技術(shù)的數(shù)據(jù)非傳統(tǒng)形式的媒體大數(shù)據(jù)量社交媒體數(shù)據(jù)最新流行詞定義大數(shù)據(jù)*2012年IBM對95個國家中26個行業(yè)的1144名專業(yè)人員調(diào)查結(jié)果大數(shù)據(jù)是一個涵蓋多種技術(shù)的概念,簡單地說,是指無法在一定時間內(nèi)用常規(guī)軟件工具對其內(nèi)容進行抓取、管理和處理的數(shù)據(jù)集合。IBM將“大數(shù)據(jù)”理念定義為4個V,即數(shù)量(Volume)、多樣性(Variety)、速度(Velocity)及數(shù)據(jù)的準(zhǔn)確性(Veracity)。大數(shù)據(jù)時代下的商業(yè)智能數(shù)據(jù)規(guī)模TB至PB級數(shù)據(jù)數(shù)據(jù)的多種形式結(jié)構(gòu)化、非結(jié)構(gòu)化、文本、多媒體數(shù)據(jù)的運動分析流數(shù)據(jù),在不到一秒內(nèi)做出決策數(shù)據(jù)的不確定性管理數(shù)據(jù)的可靠性和可預(yù)測性,盡管原生數(shù)據(jù)內(nèi)生性的不精確多樣性(Variety)精確性(Veracity)速度(Velocity)數(shù)量(Volume)大數(shù)據(jù)時代下的商業(yè)智能大數(shù)據(jù)和商業(yè)智能結(jié)合已應(yīng)用于各行各業(yè)能源與公用事業(yè)智能電表分析資產(chǎn)管理零售全渠道營銷實時促銷司法執(zhí)法多點監(jiān)測網(wǎng)絡(luò)安全檢測交通運輸物流優(yōu)化緩解交通擁堵金融服務(wù)業(yè)欺詐檢測360°客戶視圖數(shù)字媒體
實時廣告定位屬性分析健康與生命科學(xué)病歷分析疾病監(jiān)測通訊客戶資料貨幣化網(wǎng)絡(luò)分析&優(yōu)化大數(shù)據(jù)時代下的商業(yè)智能在大數(shù)據(jù)領(lǐng)域,不能充分形成大數(shù)據(jù)使用能力的競爭者將被淘汰大數(shù)據(jù)時代下的商業(yè)智能大數(shù)據(jù)的使用情況大數(shù)據(jù)時代下的商業(yè)智能4、大數(shù)據(jù)的應(yīng)用不僅僅是精準(zhǔn)營銷通過用戶行為分析實現(xiàn)精準(zhǔn)營銷是大數(shù)據(jù)的典型應(yīng)用,但是大數(shù)據(jù)在各行各業(yè)特別是公共服務(wù)領(lǐng)域具有廣闊的應(yīng)用前景消費行業(yè)金融服務(wù)食品安全醫(yī)療衛(wèi)生軍事交通環(huán)保電子商務(wù)氣象大數(shù)據(jù)時代下的商業(yè)智
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- CCAA - 2024年03月建筑施工領(lǐng)域?qū)I(yè)答案及解析 - 詳解版(65題)
- 山東省煙臺市海陽市2025-2026學(xué)年七年級上學(xué)期期末生物學(xué)試題(含解析)
- 中學(xué)學(xué)生課外實踐基地建設(shè)制度
- 養(yǎng)老院環(huán)境衛(wèi)生與綠化制度
- 企業(yè)信息安全規(guī)范制度
- 電池制液工崗前基礎(chǔ)驗收考核試卷含答案
- 鐵氧體材料燒成工崗后能力考核試卷含答案
- 海藻飼料肥料制作工崗前達(dá)標(biāo)考核試卷含答案
- 我國上市公司機構(gòu)投資者持股、融資方式與并購績效的關(guān)聯(lián)性探究
- 藏藥調(diào)理師安全檢查水平考核試卷含答案
- 畜禽糞污資源化利用培訓(xùn)
- 《搶救藥物知識》課件
- 建筑工程咨詢服務(wù)合同(標(biāo)準(zhǔn)版)
- 2024年4月自考05424現(xiàn)代設(shè)計史試題
- 綜合能源管理系統(tǒng)平臺方案設(shè)計及實施合集
- 甲苯磺酸奧馬環(huán)素片-藥品臨床應(yīng)用解讀
- 共享單車對城市交通的影響研究
- 監(jiān)理大綱(暗標(biāo))
- 機關(guān)職工代表大會制度(五篇)
- 中心小學(xué)11-12學(xué)年度教師年度量化評分實施方案
- SH/T 1627.1-1996工業(yè)用乙腈
評論
0/150
提交評論