版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省永豐中學2024屆數(shù)學高一上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知實數(shù)滿足,那么的最小值為(
)A. B.C. D.2.“密位制”是用于航海方面的一種度量角的方法,我國采用的“密位制”是密位制,即將一個圓周角分為等份,每一個等份是一個密位,那么密位對應弧度為()A. B.C. D.3.已知正數(shù)、滿足,則的最小值為A. B.C. D.4.函數(shù)是A.最小正周期為的奇函數(shù)B.最小正周期為的奇函數(shù)C.最小正周期為的偶函數(shù)D.最小正周期為的偶函數(shù)5.設全集U=1,2,3,4,5,6,7,8,9,集合A=2,4,6,8,那么A.9 B.1,3,5,7,9C.1,3,5 D.2,4,66.設函數(shù)(),,則方程在區(qū)間上的解的個數(shù)是A. B.C. D.7.已知集合,
,則(
)A. B.C. D.8.已知a>0,則當取得最小值時,a值為()A. B.C. D.39.有四個關于三角函數(shù)的命題::xR,+=:x、yR,sin(x-y)=sinx-siny:x=sinx:sinx=cosyx+y=其中假命題的是A., B.,C., D.,10.已知函數(shù),,如圖所示,則圖象對應的解析式可能是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在一個周期內圖象如圖所示,此函數(shù)的解析式為___________.12.如圖1是我國古代著名的“趙爽弦圖”的示意圖,它由四個全等的直角三角形圍成,其中,現(xiàn)將每個直角三角形的較長的直角邊分別向外延長一倍,得到如圖2的數(shù)學風車,則圖2“趙爽弦圖”外面(圖中陰影部分)的面積與大正方形面積之比為_______________13.已知偶函數(shù)是區(qū)間上單調遞增,則滿足的取值集合是__________14.已知,,當時,關于的不等式恒成立,則的最小值是_________15.設角的頂點與坐標原點重合,始邊與軸的非負半軸重合,若角的終邊上一點的坐標為,則的值為__________16.設扇形的周長為,面積為,則扇形的圓心角的弧度數(shù)是________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)當時,求函數(shù)的值域;(2)若恒成立,求實數(shù)的取值范圍18.已知函數(shù).(1)求的最小正周期;(2)若,求的值域.19.某大學為了解學生對兩家餐廳的滿意度情況,從在兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行滿意指數(shù)打分(滿意指數(shù)是指學生對餐廳滿意度情況的打分,分數(shù)設置為分.根據(jù)打分結果按,分組,得到如圖所示的頻率分布直方圖,其中餐廳滿意指數(shù)在中有30人.(1)求餐廳滿意指數(shù)頻率分布直方圖中的值;(2)利用樣本估計總體的思想,估計餐廳滿意指數(shù)和餐廳滿意指數(shù)的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間中點值作代表);參考公式:,其中為的平均數(shù),分別為對應的頻率.(3)如果一名新來同學打算從兩家餐廳中選擇一個用餐,你建議選擇哪個餐廳?說明理由.20.已知二次函數(shù)的圖象與軸、軸共有三個交點.(1)求經(jīng)過這三個交點的圓的標準方程;(2)當直線與圓相切時,求實數(shù)的值;(3)若直線與圓交于兩點,且,求此時實數(shù)的值.21.已知函數(shù)在區(qū)間上有最大值5和最小值2,求、的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】表示直線上的點到原點的距離,利用點到直線的距離公式求得最小值.【題目詳解】依題意可知表示直線上的點到原點的距離,故原點到直線的距離為最小值,即最小值為,故選A.【題目點撥】本小題主要考查點到直線的距離公式,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.2、B【解題分析】根據(jù)弧度制公式即可求得結果【題目詳解】密位對應弧度為故選:B3、B【解題分析】由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值【題目詳解】,所以,,則,所以,,當且僅當,即當時,等號成立,因此,的最小值為,故選【題目點撥】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關鍵,屬于中等題4、C【解題分析】根據(jù)題意,由于函數(shù)是,因此排除線線A,B,然后對于選項C,D,由于正弦函數(shù)周期為,那么利用圖象的對稱性可知,函數(shù)的周期性為,故選C.考點:函數(shù)的奇偶性和周期性點評:解決的關鍵是根據(jù)已知函數(shù)解析式倆分析確定奇偶性,那么同時結合圖像的變換來得到周期,屬于基礎題5、B【解題分析】由補集的定義分析可得?U【題目詳解】根據(jù)題意,全集U=1,2,3,4,5,6,7,8,9,而A=則?U故選:B6、A【解題分析】由題意得,方程在區(qū)間上的解的個數(shù)即函數(shù)與函數(shù)的圖像在區(qū)間上的交點個數(shù)在同一坐標系內畫出兩個函數(shù)圖像,注意當時,恒成立,易得交點個數(shù)為.選A點睛:函數(shù)零點的求解與判斷方法:(1)直接求零點:令f(x)=0,如果能求出解,則有幾個解就有幾個零點(2)零點存在性定理:利用定理不僅要函數(shù)在區(qū)間[a,b]上是連續(xù)不斷的曲線,且f(a)·f(b)<0,還必須結合函數(shù)的圖象與性質(如單調性、奇偶性)才能確定函數(shù)有多少個零點(3)利用圖象交點的個數(shù):將函數(shù)變形為兩個函數(shù)的差,畫兩個函數(shù)的圖象,看其交點的橫坐標有幾個不同的值,就有幾個不同的零點.但在應用圖象解題時要注意兩個函數(shù)圖象在同一坐標系內的相對位置,要做到觀察仔細,避免出錯7、D【解題分析】因,,故,應選答案D8、C【解題分析】利用基本不等式求最值即可.【題目詳解】∵a>0,∴,當且僅當,即時,等號成立,故選:C9、A【解題分析】故是假命題;令但故是假命題.10、C【解題分析】利用奇偶性和定義域,采取排除法可得答案.【題目詳解】顯然和為奇函數(shù),則和為奇函數(shù),排除A,B,又定義域為,排除D故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】根據(jù)所給的圖象,可得到,周期的值,進而得到,根據(jù)函數(shù)的圖象過點可求出的值,得到三角函數(shù)的解析式【題目詳解】由圖象可知,,,由,三角函數(shù)的解析式是函數(shù)的圖象過,,把點的坐標代入三角函數(shù)的解析式,,,又,,三角函數(shù)的解析式是.故答案為:.12、24:25【解題分析】設三角形三邊的邊長分別為,分別求出陰影部分面積和大正方形面積即可求解.【題目詳解】解:由題意,“趙爽弦圖”由四個全等的直角三角形圍成,其中,設三角形三邊的邊長分別為,則大正方形的邊長為5,所以大正方形的面積,如圖,將延長到,則,所以,又到的距離即為到的距離,所以三角形的面積等于三角形的面積,即,所以“趙爽弦圖”外面(圖中陰影部分)的面積,所以“趙爽弦圖”外面(圖中陰影部分)的面積與大正方形面積之比為.故答案為:24:25.13、【解題分析】因為為偶函數(shù),所以等價于,又是區(qū)間上單調遞增,所以.解得.答案為:.點睛:本題屬于對函數(shù)單調性應用的考查,若函數(shù)在區(qū)間上單調遞增,則時,有,事實上,若,則,這與矛盾,類似地,若在區(qū)間上單調遞減,則當時有;據(jù)此可以解不等式,由函數(shù)值的大小,根據(jù)單調性就可以得自變量的大小關系.本題中可以利用對稱性數(shù)形結合即可.14、4【解題分析】由題意可知,當時,有,所以,所以點睛:本題考查基本不等式的應用.本題中,關于的不等式恒成立,則當時,有,得到,所以.本題的關鍵是理解條件中的恒成立15、##0.5【解題分析】利用余弦函數(shù)的定義即得.【題目詳解】∵角的終邊上一點的坐標為,∴.故答案為:.16、【解題分析】設扇形的半徑和弧長分別為,由題設可得,則扇形圓心角所對的弧度數(shù)是,應填答案三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)采用換元,令,當時,把函數(shù)轉化為二次函數(shù),即可求出答案.(2)采用換元,令,即在恒成立,即可求出答案.【小問1詳解】函數(shù),令,當時,,的值域為.【小問2詳解】,恒成立,只需:在恒成立;令:則得.18、(1)最小正周期;(2).【解題分析】(1)先利用余弦的二倍角公式和兩角差的正弦化簡后,再由輔助角公式化簡,利用周期公式求周期;(2)由x的范圍求出的范圍,再由正弦函數(shù)的有界性求f(x)的值域.【題目詳解】由已知(1)函數(shù)的最小正周期;(2)因為,所以所以,所以.【題目點撥】本題考查三角函數(shù)的周期性、值域及兩角和與差的正弦、二倍角公式,關鍵點是對的解析式利用公式進行化簡,考查學生的基礎知識、計算能力,難度不大,綜合性較強,屬于簡單題.19、(1),(2)餐廳滿意指數(shù)的平均數(shù)和方差分別為,;餐廳滿意指數(shù)的平均數(shù)和方差分別為,(3)答案見解析【解題分析】(1)根據(jù)頻率的含義和性質列方程,即可解得:,;(2)根據(jù)平均數(shù)和方差的定義,然后運算即可;(3)平均數(shù)和方差在實際生活中的應用,平均滿意度越高,就越會受到歡迎.【小問1詳解】因為餐廳滿意指數(shù)在中有30人,則有:解得:根據(jù)總的頻率和為1,則有:解得:綜上可得:,【小問2詳解】設餐廳滿意指數(shù)的平均數(shù)和方差分別為餐廳滿意指數(shù)的平均數(shù)和方差分別為,則有:,,,,綜上可得:餐廳滿意指數(shù)的平均數(shù)和方差分別為,;餐廳滿意指數(shù)的平均數(shù)和方差分別,【小問3詳解】答案一:餐廳滿意指數(shù)的平均數(shù)為,方差為,餐廳滿意指數(shù)的平均數(shù)為,方差為,因為,所以推薦餐廳;答案二:餐廳滿意指數(shù)在的頻率為,在的頻率為,餐廳滿意指數(shù)在和的頻率都為,所以推薦餐廳;(答案不唯一,符合實際情況即可)20、(1);(2)或;(3)【解題分析】(1)先求出二次函數(shù)的圖象與坐標軸的三個交點的坐標,然后根據(jù)待定系數(shù)法求解可得圓的標準方程;(2)根據(jù)圓心到直線的距離等于半徑可得實數(shù)的值;(3)結合弦長公式可得所求實數(shù)的值【題目詳解】(1)在中,令,可得;令,可得或所以三個交點分別為,,,設圓的方程為,將三個點的坐標代入上式得,解得,所以圓的方程為,化為標準方程為:(2)由(1)知圓心,因為直線與圓相切,所以,解得或,所以實數(shù)的值為或(3)由題意得圓心到直線的距離,又,所以,則,解得所以實數(shù)的值為或【題目點撥】(1)求圓的方程時常用的方法有兩種:一是幾何法,即求出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商砼站管理財務制度
- 衛(wèi)生保健人員考核制度
- 休閑業(yè)衛(wèi)生制度
- 現(xiàn)將補充財務制度
- 學生飲食衛(wèi)生制度
- 食堂衛(wèi)生健康管理制度
- 員工宿舍內衛(wèi)生制度
- 衛(wèi)生調查詢問室管理制度
- 衛(wèi)生員工獎懲制度
- 足療運營店管理制度
- 年度應急管理工作計劃范文
- 浙江省工貿企業(yè)電氣隱患排查技術服務規(guī)范
- 中建10t龍門吊安拆安全專項施工方案
- 操作工技能等級評級方案
- 購房委托書范文
- 素描第2版(藝術設計相關專業(yè))全套教學課件
- 新生兒先天性腎上腺皮質增生癥
- (完整版)四宮格數(shù)獨題目204道(可直接打印)及空表(一年級數(shù)獨題練習)
- DB32/T+4539-2023+淡水生物環(huán)境DNA監(jiān)測技術方法
- 火電廠鍋爐運行與維護
- CTM系列產(chǎn)品使用手冊
評論
0/150
提交評論