大學(xué)課件:決策樹(shù)1_第1頁(yè)
大學(xué)課件:決策樹(shù)1_第2頁(yè)
大學(xué)課件:決策樹(shù)1_第3頁(yè)
大學(xué)課件:決策樹(shù)1_第4頁(yè)
大學(xué)課件:決策樹(shù)1_第5頁(yè)
已閱讀5頁(yè),還剩23頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Classificationtreesfortimeseries指導(dǎo)老師:褚挺進(jìn)、李揚(yáng)、張拔群組員:王肖南、呂志鵬、胡小寧、鄭冰IntroductionTimeseriesclassificationhasbeenthesubjectofextensiveresearchinthelastseveralyears.1、Afirstcategoryofproposalconsistsofmappingthetimeseriestoanewdescriptionspacewhereconventionalclassifierscanbeapplied.2、Asecondclassofworksproposesnewheuristics,generallystartingwiththetimeseriessegmentationtoextractprototypesthatbestcharacterizethetimeseriesclasses.3、AthirdcategorymaybedistinguishedthatconsistsofthehiddenMarkovmodels,whichisfrequentlyusedforspeechrecognitionandsignalprocessing.TheworkofYamadaetal.Yamadaetal.proposestwosplittests.Thefirsttest,calledthestandard-examplesplittest,usesanexhaustivesearchtoselectoneexistingtimeseries(calledthestandardtimeseries)Thesecondproposedsplittest,whichiscalledthecluster-examplesplittest,performsanexhaustivesearchfortwostandardtimeseries.TheworkofBalakrishnanandMadigan

BalakrishnanandMadiganlookforapairofreferencetimeseriesthatbestbisectsthesetoftimeseriesaccordingtoaclustering-goodnesscriterion.Forthetimeseriesproximities,boththeEuclideandistanceandthedynamictimewarpingareusedtocomparetheefficiencyoftheobtainedclassificationtrees.SomeremarksFirst,asformanydistance-basedapproaches,theEuclideandistanceandthedynamictimewarpingareconsideredforthetimeseriespromimities.Thestandardmeasuresarevalues-basedmetricsandignorethebehaviorsofthetimeseries.Second,theproposedsplitsusethesamemetrictodivideallthenodes,butthepeculiaritiesofthetimeseriesmaychangefromonenodetoanother.Finally,thetimeseriesdistancesarecalculatedusingthewholetimeseriesvalues,eventhoughthediscriminationisdeterminedbyparticularsubsequences.ThestudyofthispaperThispaperfocusesonadistance-basedapproachtoextendingclassificationtreestotemporaldata.Anewsplitcriterionbasedontimeseriesproximitiesisintroduced.1、Thecriterionreliesonanadaptivetimeseriesmetrictocoverbothbehaviorsandvaluesproximities.2、Thecriterioninvolvestheautomaticextractionofthemostdiscriminatingsubsequences.3、Throughtheexperimentsperformedinthisstudy,Weshowthatthepropsedtreeoutperformstemporaltreesusingstandardtimeseriesdistancesandperformswellcomparaedtoothercompetitivetimeseriesclassifiers.TherestofpaperisorganizedasfollowsSection3,themajormetricsfortimeseriesarepresentinanovelunifiedformalism.Section4presentsthenewtimeseriesclassificationtree,providesthemainalgorithmsanddiscussestheircomplexity.Section5,theproposedclassificationtreeisperformedonsixpublicandthreenewsimulatesdatasets.Section6,theinducedtreesarecomparedtotemporaltreeusingstandarddistancesandcomparedtoothercompetitivetimeseriesclassifier.3.Timeseriesmetrics3.1Values-basedmetrics3.2Behavior-basedmetrics3.3Valuesandbehaviorbasedmetrics3.1Values-basedmetrics時(shí)間序列長(zhǎng)度不一致:dynamictimewarping時(shí)間序列長(zhǎng)度一致:Euclideandistance

Euclideandistance:dynamictimewarping:

dynamictimewarping:

兩者比較:

dynamictimewarping:Euclideandistance:

3.2Behavior-basedmetricsUntilrecently,manyapplicationsindifferentdomains(e.g.,speechrecognition,systemdesigncontrol,functionalMRI,microarraysandgeneexpressionanalysis)haveusedthePearsoncorrelationcoefficientasabehaviorproximitymeasurebetweensignals.

時(shí)間序列長(zhǎng)度一致:

時(shí)間序列長(zhǎng)度不一致:3.3Valuesandbehaviorbasedmetrics

C(r):Co(r):k的取值:[0:6]4.Timeseriesclassificationtrees*theuseofanadaptivemetric.*theinvolvementoftheautomaticextractionofthemostdiscriminatingsubsequences.*theinvolvementoftheautomaticextractionofthemo

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論