版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
本文格式為Word版,下載可任意編輯——教材分析之第十八章平行四邊形第十八章平行四邊形
一、地位與作用
同三角形一樣,四邊形也是最基本的平面圖形,是本學(xué)段“空間與圖形〞的主要研究對(duì)象.本章將在平行線(xiàn)、三角形的基礎(chǔ)上進(jìn)一步研究一些特別四邊形的知識(shí),摸索平行四邊形、矩形、菱形、正方形的有關(guān)性質(zhì)和常用判定方法,并對(duì)有關(guān)結(jié)論進(jìn)行推理證明,進(jìn)一步發(fā)展學(xué)生的規(guī)律思維能力和推理論證能力,對(duì)學(xué)生要求較高.就本學(xué)期的教學(xué)內(nèi)容來(lái)講,本章是教學(xué)重點(diǎn)和難點(diǎn)之一.就中考來(lái)講,四邊形的知識(shí)會(huì)以填空題、中檔解答題、動(dòng)手操作題、綜合解答題等形式進(jìn)行考察,2023年只有16題、20題涉及本章知識(shí),分值為約3+4分,2023年只有20題、22題、23題涉及本章知識(shí),分值為約4+4+1分,2023年只有14題、16題涉及本章知識(shí),分值為3+3分,從近幾年武漢的中考題看來(lái),本章考試所占分值還是很重要的.所以,學(xué)好這一章,既是對(duì)三角形知識(shí)的穩(wěn)定,又是為后續(xù)的幾何學(xué)習(xí)做好充分的知識(shí)和能力儲(chǔ)存,更是為中考打下堅(jiān)實(shí)的基礎(chǔ)。
二、知識(shí)結(jié)構(gòu)圖附屬關(guān)系:
蛻變關(guān)系:
三、課標(biāo)要求及學(xué)習(xí)目標(biāo)
1、
1、“理解平行四邊形、矩形、菱形、正方形的概念,以及它們之間的關(guān)系〞,這種“關(guān)系〞是特別與一般的關(guān)系,即圖形越來(lái)越特別,它的性質(zhì)就越來(lái)越多,判定它需要的條件也越來(lái)
1
越多,這對(duì)于研究平行四邊形、矩形、菱形、正方形的性質(zhì)和判定有著重要的作用。這部分知識(shí)像鏈條一樣環(huán)環(huán)緊扣,這條“知識(shí)鏈〞不僅蘊(yùn)涵著“一般和特別〞的思想,而且也是引導(dǎo)學(xué)生感悟“分類(lèi)〞思想的好素材。
2、四邊形與三角形有著緊湊的聯(lián)系,研究四邊形性質(zhì)往往借助三角形的有關(guān)知識(shí)。但是四邊形與三角形有一個(gè)本質(zhì)的差異:四邊形不具有穩(wěn)定性,三角形是具有穩(wěn)定性。假使不重視這種差異,就會(huì)給理解和把握相關(guān)的知識(shí)帶來(lái)困難。譬如,學(xué)生往往不能正確把握正多邊形的定義,其原因就是在于邊數(shù)大于或等于4的多邊形不具有穩(wěn)定性,由各邊相等不能推出各個(gè)角相等,所以必需定義“各邊相等、各角相等的多邊形叫做正多邊形〞;而三角形具有穩(wěn)定性,由三邊相等可以推出三個(gè)角相等,所以只需定義“各邊相等的三角形叫做正三角形〞。3、平行四邊形、矩形、菱形、正方形的性質(zhì)定理和判定定理。
4、三角形的中位線(xiàn)定理的摸索和證明,可以完整地展示“合情推理——提出猜想——演繹推理〞的過(guò)程,引導(dǎo)學(xué)生經(jīng)歷這樣的過(guò)程,有利于他們體會(huì)兩種推理功能不同,但相輔相成。
1.理解平行四邊形、矩形、菱形、正方形的概念,以及它們之間的關(guān)系;2.摸索并證明平行四邊形、矩形、菱形、正方形的性質(zhì)定理和判定定理,并能運(yùn)用它們進(jìn)行證明和計(jì)算;
3.了解兩條平行線(xiàn)之間距離的意義,能度量?jī)蓷l平行線(xiàn)之間的距離;4.摸索并證明三角形中位線(xiàn)定理;
5.通過(guò)經(jīng)歷平行四邊形以及矩形、菱形、正方形的性質(zhì)定理和判定定理的摸索過(guò)程,豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)和體驗(yàn),進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的合情推理能力;
6.通過(guò)平行四邊形、矩形、菱形、正方形的性質(zhì)定理和判定定理以及相關(guān)問(wèn)題的證明和計(jì)算,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的演繹推理能力;
7.通過(guò)分析平行四邊形與矩形、菱形、正方形概念之間的聯(lián)系與區(qū)別,使學(xué)生進(jìn)一步認(rèn)識(shí)一般與特別的關(guān)系
四、課時(shí)安排建議
本章教學(xué)時(shí)間約需15課時(shí),具體安排如下:
18.1平行四邊形7課時(shí)18.2特別的平行四邊形6課時(shí)數(shù)學(xué)活動(dòng)
小結(jié)2課時(shí)五、全章教學(xué)建議
(一)復(fù)習(xí)有關(guān)知識(shí)
1.多邊形的有關(guān)概念、內(nèi)角、外角、對(duì)角線(xiàn)等知識(shí)2.三角形的全等3.等腰三角形
2
4.直角三角形
(二)引導(dǎo)學(xué)生把學(xué)習(xí)性質(zhì)和判定的過(guò)程,變成系統(tǒng)研究這些新課題的過(guò)程
這部分的新知識(shí)其實(shí)在難度上并不大,學(xué)生對(duì)這些基本的幾何圖形和比較熟悉,一般來(lái)說(shuō),學(xué)生獨(dú)立探究它們的性質(zhì)和判定方法是完全可行的.
1.探究的方式:試驗(yàn)+推理2.引導(dǎo)學(xué)生有序地進(jìn)行探究.譬如:
在探究平行四邊形的性質(zhì)的時(shí)候,可以給學(xué)生逐步提出下面的問(wèn)題:[問(wèn)題1]“對(duì)比三角形的研究方法,平行四邊形我們可以研究哪些方面的知識(shí)?“平行四邊形的定義、性質(zhì)、判定。。。。。是什么?〞
[問(wèn)題2]“假使要研究平行四邊形的有關(guān)性質(zhì),你認(rèn)為可以研究哪些問(wèn)題?〞[問(wèn)題3]“對(duì)于這些問(wèn)題的答案你有別的看法嗎?你能?chē)L試著證明這些結(jié)論嗎?〞/“請(qǐng)同學(xué)們開(kāi)始研究平行四邊形的邊的有關(guān)性質(zhì)〞
[問(wèn)題4]“證明這些性質(zhì)的時(shí)候,用到了什么知識(shí)?〞/“添加了什么輔助線(xiàn)?輔助線(xiàn)的作用是什么?〞“在研究的過(guò)程中你又有什么新的發(fā)現(xiàn)?
在探究平行四邊形的判定方法時(shí),可以給學(xué)生逐步提出下面的問(wèn)題:[問(wèn)題1]“平行四邊形的定義、性質(zhì)已經(jīng)研究完了,下面該研究什么呢?〞/“用什么樣的方法開(kāi)展平行四邊形判定的研究?〞
[問(wèn)題2]“那么,具有哪些性質(zhì)的四邊形一定是平行四邊形呢?〞/“那么,對(duì)于一個(gè)四邊形而言,它的邊、角、對(duì)角線(xiàn)至少要滿(mǎn)足什么條件,這個(gè)四邊形才是平行四邊形?〞/“對(duì)邊相等或?qū)窍嗟然驅(qū)蔷€(xiàn)相互平分的四邊形是不是平行四邊形呢?〞
[問(wèn)題3]“假使一個(gè)四邊形的邊只滿(mǎn)足一個(gè)條件,譬如:一組對(duì)邊相等,它一定是平行四邊形嗎?假使角只滿(mǎn)足一個(gè)條件呢?〞
[問(wèn)題4]根據(jù)學(xué)生的具體狀況,引導(dǎo)學(xué)生逐步建立起類(lèi)似于下面的“研究提綱〞(為簡(jiǎn)單起見(jiàn),我們只研究對(duì)邊、對(duì)角、鄰角、對(duì)角線(xiàn)需要滿(mǎn)足的條件):
A類(lèi)研究提綱
?一組對(duì)邊:平行且相等??分別平行(a)邊????兩組對(duì)邊?分別相等?一組平行,一組相等???⑴⑵⑶⑷(b)角??兩組鄰角:互補(bǔ)?兩組對(duì)角:分別相等?一組對(duì)邊平行,一組對(duì)角相等?一組對(duì)邊相等,一組對(duì)角相等3
⑸⑹⑺⑻
(c)邊?角?
(d)對(duì)角線(xiàn):相互平分
⑼(e)對(duì)角線(xiàn)+角:一組對(duì)角相等,一條對(duì)角線(xiàn)平分另一條對(duì)角線(xiàn)⑽e.1.一組對(duì)角相等,且連結(jié)這組對(duì)角頂點(diǎn)的對(duì)角線(xiàn)被另一條對(duì)角線(xiàn)平分(10.1)e.2.一組對(duì)角相等,且連結(jié)這組對(duì)角頂點(diǎn)的對(duì)角線(xiàn)平分另一條對(duì)角線(xiàn)(10.2)(f)對(duì)角線(xiàn)+邊:??一組對(duì)邊平行,一條對(duì)角線(xiàn)平分另一條對(duì)角線(xiàn)⑾⑿一組對(duì)邊相等,一條對(duì)角線(xiàn)平分另一條對(duì)角線(xiàn)?B類(lèi)研究提綱:1)逆向思維:寫(xiě)出性質(zhì)定理的逆命題;2)判定定理中條件的組合
[問(wèn)題5]“滿(mǎn)足條件⑴?⑿之一的四邊形一定是平行四邊形嗎?假使是,請(qǐng)證明;假使不是,請(qǐng)舉出反例〞(通過(guò)“一題多解〞的形式,讓學(xué)生體會(huì)到各種判別方法的相互轉(zhuǎn)化)(要根據(jù)學(xué)生的程度采取適當(dāng)?shù)拿鞣桨福?/p>
[問(wèn)題6]“根據(jù)上面的研究,你能給出幾條判定平行四邊形的方法嗎?〞[問(wèn)題7]給出一些基本的應(yīng)用判定方法的例題.
對(duì)于矩形、菱形、正方形等等內(nèi)容,我認(rèn)為都可以采用類(lèi)似的方式,使學(xué)生學(xué)習(xí)這些新知識(shí)的過(guò)程變成系統(tǒng)研究這些新課題的過(guò)程.(三)重視直觀操作和規(guī)律推理的有機(jī)結(jié)合,重視幾何直觀
1.設(shè)置一定數(shù)量的小綜合其他知識(shí)、集中使用本節(jié)課知識(shí)的例題、習(xí)題,適量重復(fù)???盡快熟悉新知識(shí)
2.設(shè)置一定數(shù)量的能特別表達(dá)當(dāng)堂知識(shí)方法優(yōu)越性的例題、習(xí)題???主動(dòng)應(yīng)用新知識(shí)
(四)及時(shí)加強(qiáng)、屢屢重復(fù)各種四邊形在概念、性質(zhì)、判定等方面的聯(lián)系與區(qū)別
平行四邊形形一個(gè)角是直角矩形形
正方形
一組鄰邊相等菱形
一個(gè)角是直角
一組鄰邊相等
圖1
(五)注意引導(dǎo)學(xué)生總結(jié)具有典型特征的圖形、典型輔助線(xiàn)1.連接對(duì)角線(xiàn):2.作高:
3.幾種特別四邊形的對(duì)角線(xiàn)
①矩形對(duì)角線(xiàn)交角為60?或120?時(shí),可得等邊三角形和含30?角的直角三角形
4
②菱形有一個(gè)角為60?時(shí),可得含30?角的四個(gè)全等直角三角形③正方形中的四大四小等腰直角三角形4.中點(diǎn)四邊形:
(一)對(duì)角線(xiàn)+中位線(xiàn)
(1)順次連結(jié)任意四邊形各邊中點(diǎn)構(gòu)成的四邊形是_______________(2)順次連結(jié)對(duì)角線(xiàn)相等的四邊形的各邊中點(diǎn),構(gòu)成的四邊形是__________(3)順次連結(jié)對(duì)角線(xiàn)相互垂直的四邊形的各邊中點(diǎn)構(gòu)成的四邊形是_______(4)順次連結(jié)平行四邊形各邊中點(diǎn)構(gòu)成的四邊形是_________順次連結(jié)矩形各邊中點(diǎn)構(gòu)成的四邊形是_________順次連結(jié)菱形各邊中點(diǎn)構(gòu)成的四邊形是_________
(二)中點(diǎn)四邊形表一:
原四邊形原四邊形對(duì)角線(xiàn)數(shù)量與位置關(guān)系中點(diǎn)四
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 水平導(dǎo)向鉆進(jìn)施工方案
- 2026廣東佛山順德區(qū)西山小學(xué)濱江學(xué)校招聘數(shù)學(xué)臨聘教師備考題庫(kù)帶答案詳解
- 2026上半年黑龍江省衛(wèi)生健康委員會(huì)直屬事業(yè)單位招聘125人備考題庫(kù)及答案詳解一套
- 2026廣西桂林市雁山區(qū)人民檢察院聘用書(shū)記員招聘1人備考題庫(kù)附答案詳解
- 員工手冊(cè)和管理制度
- 2026年寵物美容師實(shí)操技能培訓(xùn)方案試卷
- 肥槽回填方案
- 工業(yè)生產(chǎn)流程優(yōu)化與提升方案
- 2026廣西來(lái)賓市興賓區(qū)投資促進(jìn)局招聘編外人員1人備考題庫(kù)及答案詳解參考
- 2026國(guó)家NIBS孫碩豪實(shí)驗(yàn)室招聘?jìng)淇碱}庫(kù)及一套答案詳解
- 娛樂(lè)場(chǎng)所安全管理規(guī)定與措施
- GB/T 45701-2025校園配餐服務(wù)企業(yè)管理指南
- 電影項(xiàng)目可行性分析報(bào)告(模板參考范文)
- 老年協(xié)會(huì)會(huì)員管理制度
- LLJ-4A車(chē)輪第四種檢查器
- 大索道竣工結(jié)算決算復(fù)審報(bào)告審核報(bào)告模板
- 2025年南充市中考理科綜合試卷真題(含標(biāo)準(zhǔn)答案)
- JG/T 3049-1998建筑室內(nèi)用膩予
- 人衛(wèi)基礎(chǔ)護(hù)理學(xué)第七版試題及答案
- 煙草物流寄遞管理制度
- 河北審圖合同協(xié)議
評(píng)論
0/150
提交評(píng)論