河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題含解析_第1頁
河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題含解析_第2頁
河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題含解析_第3頁
河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題含解析_第4頁
河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省衡水市景縣中學2024屆高二數學第一學期期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則x的值為()A.4 B.6C.4或6 D.82.設函數,則曲線在點處的切線方程為()A. B.C. D.3.若直線的一個方向向量為,直線的一個方向向量為,則直線與所成的角為()A30° B.45°C.60° D.90°4.觀察下列各式:,,,,,可以得出的一般結論是A.B.C.D.5.已知,且,則的最大值為()A. B.C. D.6.已知函數在處取得極值,則的極大值為()A. B.C. D.7.若直線與互相平行,且過點,則直線的方程為()A. B.C. D.8.函數的圖象如圖所示,則下列大小關系正確的是()A.B.C.D.9.將一枚骰子先后拋擲兩次,若先后出現的點數分別記為a,b,則直線到原點的距離不超過1的概率是()A. B.C. D.10.拋物線準線方程為()A. B.C. D.11.設,隨機變量X的分布列如下表所示,隨機變量Y滿足,則當a在上增大時,關于的表述下列正確的是()X013PabA增大 B.減小C.先增大后減小 D.先減小后增大12.已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動圓M同時與圓C1及圓C2相外切,求動圓圓心M的軌跡方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=1二、填空題:本題共4小題,每小題5分,共20分。13.四棱錐中,底面是一個平行四邊形,,,,則四棱錐體積為_______14.某汽車運輸公司購買了一批豪華大客車投入運營.據市場分析,每輛客車營運的總利潤y(單位:10萬元)與營運年數x()為二次函數的關系(如圖),則每輛客車營運年數為________時,營運的年平均利潤最大15.已知曲線,則以下結論正確的是______.①曲線C關于點對稱;②曲線C關于y軸對稱;③曲線C被x軸所截得的弦長為2;④曲線C上的點到原點距離都不超過2.16.已知、是橢圓的兩個焦點,點在橢圓上,且,,則橢圓離心率是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設命題方程表示中心在原點,焦點在坐標軸上的雙曲線;命題,,若“”為假命題,“”為真命題,求實數的取值范圍.18.(12分)已知數列{an}滿足*(1)求數列{an}的通項公式;(2)求數列{an}的前n項和Sn19.(12分)噪聲污染已經成為影響人們身體健康和生活質量的嚴重問題,為了解聲音強度D(單位:)與聲音能量I(單位:)之間的關系,將測量得到的聲音強度D和聲音能量I的數據作了初步處理,得到如圖所示的散點圖:參考數據:其中,,,,,,,,(1)根據散點圖判斷,與哪一個適宜作為聲音強度D關于聲音能量I的回歸模型?(給出判斷即可,不必說明理由)(2)求聲音強度D關于聲音能量I回歸方程(3)假定當聲音強度D大于時,會產生噪聲污染.城市中某點P處共受到兩個聲源的影響,這兩個聲通的聲音能量分別是和,且.已知點P處的聲音能量等于與之和.請根據(2)中的回歸方程,判斷點P處是否受到噪聲污染,并說明理由參考公式:對于一組數據,其回歸直線斜率和截距的最小二乘估計公式分別為:20.(12分)如圖,已知圓C與y軸相切于點,且被x軸正半軸分成的兩段圓弧長之比為1∶2(1)求圓C的方程;(2)已知點,是否存在弦被點P平分?若存在,求直線的方程;若不存在,請說明理由21.(12分)已知等差數列的前n項和為,若公差,且,,成等比數列.(1)求的通項公式;(2)求數列的前n項和.22.(10分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據組合數的性質可求解.【詳解】,或,即或.故選:C2、A【解析】利用導數的幾何意義求解即可【詳解】由,得,所以切線的斜率為,所以切線方程為,即,故選:A3、C【解析】直接由公式,計算兩直線的方向向量的夾角,進而得出直線與所成角的大小【詳解】因為,,所以,所以,所以直線與所成角的大小為故選:C4、C【解析】1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以歸納:左邊每一個式子均有2n-1項,且第一項為n,則最后一項為3n-2右邊均為2n-1的平方故選C點睛:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現某些相同性質;(2)從已知的相同性質中推出一個明確表達的一般性命題(猜想)5、A【解析】由基本不等式直接求解即可得到結果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.6、B【解析】首先求出函數的導函數,依題意可得,即可求出參數的值,從而得到函數解析式,再根據導函數得到函數單調性,即可求出函數的極值點,從而求出函數的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調遞增,在上單調遞減,即在處取得極大值,在處取得極小值,所以;故選:B7、D【解析】由題意設直線的方程為,然后將點代入直線中,可求出的值,從而可得直線的方程【詳解】因為直線與互相平行,所以設直線的方程為,因為直線過點,所以,得,所以直線的方程為,故選:D8、C【解析】根據導數的幾何意義可得答案.【詳解】因為函數在某點處的導數值表示的是此點處切線的斜率,所以由圖可得,故選:C9、C【解析】先由條件得出a,b滿足,得出滿足的基本事件數,再求出總的基本事件數,從而可得答案.【詳解】直線到原點的距離不超過1,則所以當時,可以為5,6當時,可以為4,5,6當時,可以為4,5,6當時,可以為2,3,4,5,6當時,可以為1,2,3,4,5,6當時,可以為1,2,3,4,5,6滿足的共有25種結果.將一枚骰子先后拋擲兩次,若先后出現的點數分別記為a,b,共有種結果所以滿足條件的概率為故選:C10、D【解析】由拋物線的準線方程即可求解【詳解】由拋物線方程得:.所以,拋物線的準線方程為故選D【點睛】本題主要考查了拋物線的準線方程,屬于基礎題11、A【解析】先求得參數b,再去依次去求、、,即可判斷出的單調性.【詳解】由得則,由得a在上增大時,增大.故選:A12、A【解析】根據雙曲線定義求解【詳解】,則根據雙曲線定義知的軌跡為的左半支故選:A第II卷(非選擇題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】計算,,得到底面,計算,,計算體積得到答案.【詳解】由,,所以底面,,故,體積為.故答案為:16.14、5【解析】首先根據題意得到二次函數的解析式為,再利用基本不等式求解的最大值即可.【詳解】根據題意得到:拋物線的頂點為,過點,開口向下,設二次函數的解析式為,所以,解得,即,則營運的年平均利潤,當且僅當,即時取等號故答案為:5.15、②④【解析】將x換成,將y換成,若方程不變則關于原點對稱;將x換成,曲線的方程不變則關于y軸對稱;令通過解方程即可求得被x軸所截得的弦長;利用基本不等式即可判斷出曲線C上y軸右側的點到原點距離是否不超過2,根據曲線C關于y軸對稱,即可判斷出曲線C上的點到原點距離是否都不超過2.【詳解】對于①,將x換成,將y換成,方程改變,則曲線C關于點不對稱,故①錯誤;對于②,將x換成,曲線的方程不變,則曲線C關于y軸對稱,故②正確;對于③,令得,,解得,即曲線C與x軸的交點為和,則曲線C被x軸所截得的弦長為,故③錯誤;對于④,當時,,可得,當且僅當時取等號,即,則,即曲線C上y軸右側的點到原點的距離都不超過2,此曲線關于y軸對稱,即曲線C上y軸左側的點到原點的距離也不超過2,故④正確;故答案為:②④.16、【解析】先由,根據橢圓的定義,求出,,再由余弦定理,根據,即可列式求出離心率.【詳解】因為點在橢圓上,所以,又,所以,因,在中,由,根據余弦定理可得,解得(負值舍去)故答案為:.【點睛】本題主要考查求橢圓的離心率,屬于??碱}型.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、【解析】求出當命題、分別為真命題時實數的取值范圍,分析可知、中一真一假,分真假、假真兩種情況討論,求出對應的實數的取值范圍,綜合可得結果.【詳解】解:若為真命題,則,即,解得,若為真命題,則,解得,因為“”為假命題,“”為真命題,則、中一真一假,若真假,則,可得,若假真,則,此時.綜上所述,實數的范圍為.18、(1)(2)【解析】(1)根據遞推關系式可得,再由等差數列的定義以及通項公式即可求解.(2)利用錯位相減法即可求解.【小問1詳解】(1),即,所以數列為等差數列,公差為1,首項為1,所以,即.【小問2詳解】令,所以,所以19、(1)更適合(2)(3)點P處會受到噪聲污染,理由見解析【解析】(1)直接判斷即可;(2)令,先算線性回歸方程再算非線性回歸方程;(3)利用基本不等式計算出的最小值,再與60比較即可.【小問1詳解】更適合【小問2詳解】令,則,,D關于W的回歸方程是,則D關于I的回歸方程是【小問3詳解】設點P處的聲音能量為,則因為所以當且僅當,即時等號成立所以,所以點P處會受到噪聲污染20、(1).(2).【解析】(1)由已知得圓心C在直線上,設圓C與x軸的交點分別為E、F,則有,,圓心C的坐標為(2,1),由此求得圓C的標準方程;(2)假設存在弦被點P平分,有,由此求得直線AB的斜率可得其方程再檢驗,直線AB與圓C是否相交即可.小問1詳解】解:因為圓C與y軸相切于點,所以圓心C在直線上,設圓C與x軸的交點分別為E、F,由圓C被x軸分成的兩段弧長之比為2∶1,得,所以,圓心C的坐標為(2,1),所以圓C的方程為;【小問2詳解】解:因為點,有,所以點P在圓C的內部,假設存在弦被點P平分,則,又,所以,所以直線AB的方程為,即,檢驗,圓心C到直線AB的距離為,所以直線AB與圓C相交,所以存在弦被點P平分,此時直線的方程為.21、(1);(2).【解析】(1)由等差數列的通項公式、前n項和公式結合等比數列的性質列方程可得數列首項與公差,即可得解;(2)由,結合裂項相消法即可得解.【詳解】(1)因為數列為等差數列,,,,成等比數列,所以,所以,即,又因為,所以,所以;(2)因為,所以.【點睛】本題考查了等差數列與等比數列的綜合應用及裂項相消法的應用,考查了運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論