河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第1頁(yè)
河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第2頁(yè)
河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第3頁(yè)
河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第4頁(yè)
河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省唐山二中2023-2024學(xué)年數(shù)學(xué)高二上期末學(xué)業(yè)水平測(cè)試試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)F是拋物線的焦點(diǎn),點(diǎn),P為拋物線上一點(diǎn),P不在直線AF上,則△PAF的周長(zhǎng)的最小值是()A.4 B.6C. D.2.設(shè),為雙曲線的上,下兩個(gè)焦點(diǎn),過(guò)的直線l交該雙曲線的下支于A,B兩點(diǎn),且滿足,,則雙曲線的離心率為()A. B.C. D.3.已知為虛數(shù)單位,復(fù)數(shù)滿足為純虛數(shù),則的虛部為()A. B.C. D.4.如圖為某幾何體的三視圖,則該幾何體中最大的側(cè)面積是()A.B.C.D.5.變量,滿足約束條件則的最小值為()A. B.C. D.56.已知離散型隨機(jī)變量X的分布列如下:X123P則數(shù)學(xué)期望()A. B.C.1 D.27.函數(shù)的值域?yàn)椋ǎ〢. B.C. D.8.函數(shù),則的值為()A B.C. D.9.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.在空間直角坐標(biāo)系中,若,,則()A. B.C. D.11.下列函數(shù)中,以為最小正周期,且在上單調(diào)遞減的為()A. B.C. D.12.如圖,空間四邊形OABC中,,,,點(diǎn)M在上,且滿足,點(diǎn)N為BC的中點(diǎn),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的右焦點(diǎn)到C的漸近線的距離為,則C漸近線方程為______14.如圖,PD垂直于正方形ABCD所在平面,AB=2,E為PB的中點(diǎn),cos〈,〉=,若以DA,DC,DP所在直線分別為x,y,z軸建立空間直角坐標(biāo)系,則點(diǎn)E的坐標(biāo)為________15.我國(guó)著名數(shù)學(xué)家華羅庚曾說(shuō)過(guò):“數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難人微”.事實(shí)上,很多代數(shù)問(wèn)題可以轉(zhuǎn)化為幾何問(wèn)題加以解決,如:與相關(guān)的代數(shù)問(wèn)題可以轉(zhuǎn)化為點(diǎn)與點(diǎn)之間距離的幾何問(wèn)題.結(jié)合上述觀點(diǎn),可得方程的解是__________.16.已知拋物線C:y2=8x的焦點(diǎn)為F,直線l過(guò)點(diǎn)F與拋物線C交于A,B兩點(diǎn),以F為圓心的圓交線段AB于C,D兩點(diǎn)(從上到下依次為A,C,D,B),若,則該圓的半徑r的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知,p:,q:(1)若p是q的充分不必要條件,求實(shí)數(shù)m的取值范圍;(2)若,“p或q”為真命題,“p且q”為假命題,求實(shí)數(shù)x的取值范圍18.(12分)如圖甲,平面圖形中,,沿將折起,使點(diǎn)到點(diǎn)的位置,如圖乙,使.(1)求證:平面平面;(2)若點(diǎn)滿足,求點(diǎn)到直線的距離.19.(12分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過(guò)點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.20.(12分)同時(shí)擲兩顆質(zhì)地均勻的骰子(六個(gè)面分別標(biāo)有數(shù)字1,2,3,4,5,6的正方體)(1)求兩顆骰子向上的點(diǎn)數(shù)相等的概率;(2)求兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的整數(shù)倍的概率21.(12分)已知圓,點(diǎn)(1)若點(diǎn)在圓外部,求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),過(guò)點(diǎn)的直線交圓于,兩點(diǎn),求面積的最大值及此時(shí)直線l的斜率22.(10分)設(shè)雙曲線的左、右焦點(diǎn)分別為,,且,一條漸近線的傾斜角為60°(1)求雙曲線C的標(biāo)準(zhǔn)方程和離心率;(2)求分別以,為左、右頂點(diǎn),短軸長(zhǎng)等于雙曲線虛軸長(zhǎng)的橢圓的標(biāo)準(zhǔn)方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】由拋物線的定義轉(zhuǎn)化后求距離最值【詳解】拋物線的焦點(diǎn),準(zhǔn)線為過(guò)點(diǎn)作準(zhǔn)線于點(diǎn),故△PAF的周長(zhǎng)為,,可知當(dāng)三點(diǎn)共線時(shí)周長(zhǎng)最小,為故選:C2、A【解析】設(shè),表示出,由勾股定理列式計(jì)算得,然后在,再由勾股定理列式,計(jì)算離心率.【詳解】由題意得,,且,如圖所示,設(shè),由雙曲線的定義可得,,因?yàn)?,所以,得,所以,在中,,?故選:A【點(diǎn)睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個(gè)條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍)3、D【解析】先設(shè),代入化簡(jiǎn),由純虛數(shù)定義求出,即可求解.【詳解】設(shè),所以,因?yàn)闉榧兲摂?shù),所以,解得,所以的虛部為:.故選:D.4、B【解析】由三視圖還原原幾何體,確定幾何體的結(jié)構(gòu),計(jì)算各面面積可得【詳解】由三視圖,原幾何體是三棱錐,平面,,尺寸見三視圖,,,故選:B5、A【解析】根據(jù)不等式組,作出可行域,數(shù)形結(jié)合即可求z的最小值.【詳解】根據(jù)不等式組作出可行域如圖,,則直線過(guò)A(-1,0)時(shí),z取最小值.故選:A.6、D【解析】利用已知條件,結(jié)合期望公式求解即可【詳解】解:由題意可知:故選:D7、C【解析】根據(jù)基本不等式即可求出【詳解】因?yàn)?,?dāng)且僅當(dāng)時(shí)取等號(hào),所以函數(shù)的值域?yàn)楣蔬x:C8、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B9、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B10、B【解析】直接利用空間向量的坐標(biāo)運(yùn)算求解.【詳解】解:因?yàn)?,,所?故選:B11、B【解析】A.利用正切函數(shù)的性質(zhì)判斷;B.作出的圖象判斷;C.作出的圖象判斷;D.作出的圖象判斷.【詳解】A.是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;B.如圖所示:,由圖象知:函數(shù)是以為最小正周期,在上單調(diào)遞減,故正確;C.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;D.如圖所示:,由圖象知:是以為最小正周期,在上單調(diào)遞增,故錯(cuò)誤;故選:B12、B【解析】由空間向量的線性運(yùn)算求解【詳解】由題意,又,,,∴,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件求出雙曲線漸近線,再用點(diǎn)到直線的距離公式計(jì)算作答【詳解】雙曲線的漸近線為:,即,依題意,,即,解得,所以C漸近線方程為.故答案為:14、(1,1,1)【解析】設(shè)PD=a,則D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐標(biāo)為(1,1,1)15、【解析】根據(jù)題意,列方程計(jì)算即可【詳解】因?yàn)?,所以,可轉(zhuǎn)化為點(diǎn)到點(diǎn)和點(diǎn)的距離之和為,所以點(diǎn)在橢圓上,則,解得.故答案為:16、【解析】設(shè)出直線的方程為,代入拋物線方程,消去,可得關(guān)于的二次方程,運(yùn)用韋達(dá)定理及拋物線的定義,化簡(jiǎn)計(jì)算可求解.【詳解】拋物線C:y2=8x的焦點(diǎn)為,設(shè)以為圓心的圓的半徑為,可知,,設(shè),直線的方程為,則,代入拋物線方程,可得,即有,,,,即,所以.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)命題對(duì)應(yīng)的集合是命題對(duì)應(yīng)的集合的真子集列式解得結(jié)果即可得解;(2)“p或q”為真命題,“p且q”為假命題,等價(jià)于與一真一假,分兩種情況列式可得結(jié)果.【詳解】(1)因?yàn)閜:對(duì)應(yīng)的集合為,q:對(duì)應(yīng)的集合為,且p是q的充分不必要條件,所以,所以,解得.(2),當(dāng)時(shí),,因?yàn)椤皃或q”為真命題,“p且q”為假命題,所以與一真一假,當(dāng)真時(shí),假,所以,此不等式組無(wú)解;當(dāng)真時(shí),假,所以,解得或.綜上所述:實(shí)數(shù)x的取值范圍是或.【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查由充分不必要條件求參數(shù)取值范圍,一般可根據(jù)如下規(guī)則轉(zhuǎn)化:(1)若是的必要不充分條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(2)是的充分不必要條件,則對(duì)應(yīng)集合是對(duì)應(yīng)集合的真子集;(3)是的充分必要條件,則對(duì)應(yīng)集合與對(duì)應(yīng)集合相等;(4)是的既不充分又不必要條件,對(duì)的集合與對(duì)應(yīng)集合互不包含18、(1)證明見解析(2)【解析】(1)利用給定條件可得平面,再證即可證得平面推理作答.(2)由(1)得EA,EB,EG兩兩垂直,建立空間直角坐標(biāo)系,先求出向量在向量上的投影的長(zhǎng),然后由勾股定理可得答案.【小問(wèn)1詳解】因?yàn)椋瑒t,且,又,平面,因此,平面,即有平面,平面,則,而,則四邊形為等腰梯形,又,則有,于是有,則,即,,平面,因此,平面,而平面,所以平面平面.【小問(wèn)2詳解】由(1)知,EA,EB,EG兩兩垂直,以點(diǎn)E為原點(diǎn),射線EA,EB,EG分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,因,四邊形是矩形,則,即,,,由,則則則向量在向量上的投影的長(zhǎng)為又,所以點(diǎn)到直線的距離19、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問(wèn)1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問(wèn)2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因?yàn)镸是線段PQ的中點(diǎn),所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因?yàn)椋?,所?20、(1);(2).【解析】(1)求出同時(shí)擲兩顆骰子的基本事件數(shù)、及骰子向上的點(diǎn)數(shù)相等的基本事件數(shù),應(yīng)用古典概型的概率求法,求概率即可.(2)列舉出兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)的基本事件,應(yīng)用古典概型的概率求法,求概率即可.【小問(wèn)1詳解】同時(shí)擲兩顆骰子包括的基本事件共種,擲兩顆骰子向上的點(diǎn)數(shù)相等包括的基本事件為6種,故所求的概率為;【小問(wèn)2詳解】?jī)深w骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)時(shí),用坐標(biāo)記為,,,,,,,,,,,,,,,,共包括16個(gè)基本事件,故兩顆骰子向上的點(diǎn)數(shù)不相等,且一個(gè)點(diǎn)數(shù)是另一個(gè)點(diǎn)數(shù)的倍數(shù)有的概率為.21、(1);(2)最大值為2,【解析】(1)根據(jù)題意,將圓的方程變形為標(biāo)準(zhǔn)方程,由點(diǎn)與圓的位置關(guān)系可得,求解不等式組得答案;(2)當(dāng)時(shí),圓的方程為,求出圓心與半徑,設(shè),則,分析可得面積的最大值,結(jié)合直線與圓的位置關(guān)系可得圓心到直線的距離,設(shè)直線的方程為,即,由點(diǎn)到直線的距離公式列式求得的值【詳解】解:(1)根據(jù)題意,圓,即,若在圓外,則有,解得:,即的取值范圍為;(2)當(dāng)時(shí),圓的方程為,圓心為,半徑,設(shè),則,當(dāng)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論