版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽宿州埇橋區(qū)教育集團達標名校2024屆中考聯(lián)考數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖的平面圖形繞直線l旋轉一周,可以得到的立體圖形是()A. B. C. D.2.關于x的一元二次方程x2-4x+k=0有兩個相等的實數(shù)根,則k的值是()A.2 B.-2 C.4 D.-43.完全相同的6個小矩形如圖所示放置,形成了一個長、寬分別為n、m的大矩形,則圖中陰影部分的周長是()A.6(m﹣n) B.3(m+n) C.4n D.4m4.不等式組的整數(shù)解有()A.0個 B.5個 C.6個 D.無數(shù)個5.某商品的標價為200元,8折銷售仍賺40元,則商品進價為()元.A. B. C. D.6.人的頭發(fā)直徑約為0.00007m,這個數(shù)據(jù)用科學記數(shù)法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1057.如圖,已知點P是雙曲線y=上的一個動點,連結OP,若將線段OP繞點O逆時針旋轉90°得到線段OQ,則經過點Q的雙曲線的表達式為()A.y= B.y=﹣ C.y= D.y=﹣8.解分式方程時,去分母后變形為A. B.C. D.9.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°10.下列各運算中,計算正確的是()A. B.C. D.11.下列計算中正確的是()A.x2+x2=x4 B.x6÷x3=x2 C.(x3)2=x6 D.x-1=x12.計算(—2)2-3的值是()A、1B、2C、—1D、—2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知(x+y)2=25,(x﹣y)2=9,則x2+y2=_____.14.如圖,⊙O的半徑OD⊥弦AB于點C,連結AO并延長交⊙O于點E,連結EC.若AB=8,CD=2,則EC的長為_______.15.如圖,在同一平面內,將邊長相等的正三角形和正六邊形的一條邊重合并疊在一起,則∠1的度數(shù)為_____.16.邊長為6的正六邊形外接圓半徑是_____.17.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.18.如圖,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分線DE交AC于點D,連接BD,則∠ABD=___________°.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)嘉淇同學利用業(yè)余時間進行射擊訓練,一共射擊7次,經過統(tǒng)計,制成如圖12所示的折線統(tǒng)計圖.這組成績的眾數(shù)是;求這組成績的方差;若嘉淇再射擊一次(成績?yōu)檎麛?shù)環(huán)),得到這8次射擊成績的中位數(shù)恰好就是原來7次成績的中位數(shù),求第8次的射擊成績的最大環(huán)數(shù).20.(6分)“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:(1)求這次調查的家長人數(shù),并補全圖1;(2)求圖2中表示家長“贊成”的圓心角的度數(shù);(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?21.(6分)【發(fā)現(xiàn)證明】如圖1,點E,F(xiàn)分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,F(xiàn)D之間的數(shù)量關系.小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關系,并證明;【聯(lián)想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.22.(8分)某數(shù)學社團成員想利用所學的知識測量某廣告牌的寬度(圖中線段MN的長),直線MN垂直于地面,垂足為點P.在地面A處測得點M的仰角為58°、點N的仰角為45°,在B處測得點M的仰角為31°,AB=5米,且A、B、P三點在一直線上.請根據(jù)以上數(shù)據(jù)求廣告牌的寬MN的長.(參考數(shù)據(jù):sin58°=0.85,cos58°=0.53,tan58°=1.1,sin31°=0.52,cos31°=0.86,tan31°=0.1.)23.(8分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發(fā)沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發(fā),沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數(shù)關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.24.(10分)如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求證:四邊形ABCD是菱形;過點D作DE⊥BD,交BC的延長線于點E,若BC=5,BD=8,求四邊形ABED的周長.25.(10分)已知:如圖.D是的邊上一點,,交于點M,.(1)求證:;(2)若,試判斷四邊形的形狀,并說明理由.26.(12分)如圖,直線l切⊙O于點A,點P為直線l上一點,直線PO交⊙O于點C、B,點D在線段AP上,連接DB,且AD=DB.(1)求證:DB為⊙O的切線;(2)若AD=1,PB=BO,求弦AC的長.27.(12分)如圖,在平面直角坐標系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點,已知A(2,5).求:b和k的值;△OAB的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解題分析】
根據(jù)面動成體以及長方形繞一邊所在直線旋轉一周得圓柱即可得答案.【題目詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉一周得圓柱,故選B.【題目點撥】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉得到的立體圖形是解題關鍵.2、C【解題分析】
對于一元二次方程a+bx+c=0,當Δ=-4ac=0時,方程有兩個相等的實數(shù)根.即16-4k=0,解得:k=4.考點:一元二次方程根的判別式3、D【解題分析】
解:設小長方形的寬為a,長為b,則有b=n-3a,陰影部分的周長:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故選D.4、B【解題分析】
先解每一個不等式,求出不等式組的解集,再求整數(shù)解即可.【題目詳解】解不等式x+3>0,得x>﹣3,解不等式﹣x≥﹣2,得x≤2,∴不等式組的解集為﹣3<x≤2,∴整數(shù)解有:﹣2,﹣1,0,1,2共5個,故選B.【題目點撥】本題主要考查了不等式組的解法,并會根據(jù)未知數(shù)的范圍確定它所滿足的特殊條件的值.一般方法是先解不等式組,再根據(jù)解集求出特殊值.5、B【解題分析】
設商品進價為x元,則售價為每件0.8×200元,由利潤=售價-進價建立方程求出其解即可.【題目詳解】解:設商品的進價為x元,售價為每件0.8×200元,由題意得0.8×200=x+40解得:x=120答:商品進價為120元.故選:B.【題目點撥】此題考查一元一次方程的實際運用,掌握銷售問題的數(shù)量關系利潤=售價-進價,建立方程是關鍵.6、B【解題分析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【題目詳解】解:0.00007m,這個數(shù)據(jù)用科學記數(shù)法表示7×10﹣1.故選:B.【題目點撥】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.7、D【解題分析】
過P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對應邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【題目詳解】過P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設P(a,b),則有Q(-b,a),由點P在y=上,得到ab=3,可得-ab=-3,則點Q在y=-上.故選D.【題目點撥】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點的坐標特征,以及坐標與圖形變化,熟練掌握待定系數(shù)法是解本題的關鍵.8、D【解題分析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.9、C【解題分析】【分析】根據(jù)相似多邊形性質:對應角相等.【題目詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【題目點撥】本題考核知識點:相似多邊形.解題關鍵點:理解相似多邊形性質.10、D【解題分析】
利用同底數(shù)冪的除法法則、同底數(shù)冪的乘法法則、冪的乘方法則以及完全平方公式即可判斷.【題目詳解】A、,該選項錯誤;B、,該選項錯誤;C、,該選項錯誤;D、,該選項正確;故選:D.【題目點撥】本題考查了同底數(shù)冪的乘法、除法法則,冪的乘方法則以及完全平方公式,正確理解法則是關鍵.11、C【解題分析】
根據(jù)合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義逐項求解,利用排除法即可得到答案.【題目詳解】A.x2+x2=2x2,故不正確;B.x6÷x3=x3,故不正確;C.(x3)2=x6,故正確;D.x﹣1=,故不正確;故選C.【題目點撥】本題考查了合并同類項的方法、同底數(shù)冪的除法法則、冪的乘方、負整數(shù)指數(shù)冪的意義,解答本題的關鍵是熟練掌握各知識點.12、A【解題分析】本題考查的是有理數(shù)的混合運算根據(jù)有理數(shù)的加法、乘方法則,先算乘方,再算加法,即得結果。解答本題的關鍵是掌握好有理數(shù)的加法、乘方法則。二、填空題:(本大題共6個小題,每小題4分,共24分.)13、17【解題分析】
先利用完全平方公式展開,然后再求和.【題目詳解】根據(jù)(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9,x2+y2-2xy=9,所以x2+y2=17.【題目點撥】(1)完全平方公式:.(2)平方差公式:(a+b)(a-b)=.(3)常用等價變形:,,.14、【解題分析】
設⊙O半徑為r,根據(jù)勾股定理列方程求出半徑r,由勾股定理依次求BE和EC的長.【題目詳解】連接BE,設⊙O半徑為r,則OA=OD=r,OC=r-2,
∵OD⊥AB,
∴∠ACO=90°,
AC=BC=AB=4,
在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
r=5,
∴AE=2r=10,
∵AE為⊙O的直徑,
∴∠ABE=90°,
由勾股定理得:BE=6,
在Rt△ECB中,EC=.故答案是:.【題目點撥】考查的是垂徑定理及勾股定理,根據(jù)題意作出輔助線,構造出直角三角形,利用勾股定理求解是解答此題的關鍵.15、60°【解題分析】
先根據(jù)多邊形的內角和公式求出正六邊形每個內角的度數(shù),然后用正六邊形內角的度數(shù)減去正三角形內角的度數(shù)即可.【題目詳解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案為:60°.【題目點撥】題考查了多邊形的內角和公式,熟記多邊形的內角和公式為(n-2)×180°是解答本題的關鍵.16、6【解題分析】
根據(jù)正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形,即可求解.【題目詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長將組成一個等邊三角形,∴邊長為6的正六邊形外接圓半徑是6,故答案為:6.【題目點撥】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長將組成一個等邊三角形是解題的關鍵.17、﹣1【解題分析】
∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.18、1【解題分析】∵在△ABC中,AB=BC,∠ABC=110°,
∴∠A=∠C=1°,
∵AB的垂直平分線DE交AC于點D,
∴AD=BD,
∴∠ABD=∠A=1°;
故答案是1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)10;(2);(3)9環(huán)【解題分析】
(1)根據(jù)眾數(shù)的定義,一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),結合統(tǒng)計圖得到答案.(2)先求這組成績的平均數(shù),再求這組成績的方差;(3)先求原來7次成績的中位數(shù),再求第8次的射擊成績的最大環(huán)數(shù).【題目詳解】解:(1)在這7次射擊中,10環(huán)出現(xiàn)的次數(shù)最多,故這組成績的眾數(shù)是10;(2)嘉淇射擊成績的平均數(shù)為:,方差為:.(3)原來7次成績?yōu)?899101010,原來7次成績的中位數(shù)為9,當?shù)?次射擊成績?yōu)?0時,得到8次成績的中位數(shù)為9.5,當?shù)?次射擊成績小于10時,得到8次成績的中位數(shù)均為9,因此第8次的射擊成績的最大環(huán)數(shù)為9環(huán).【題目點撥】本題主要考查了折線統(tǒng)計圖和眾數(shù)、中位數(shù)、方差等知識.掌握眾數(shù)、中位數(shù)、方差以及平均數(shù)的定義是解題的關鍵.20、(1)答案見解析(2)36°(3)4550名【解題分析】試題分析:(1)根據(jù)認為無所謂的家長是80人,占20%,據(jù)此即可求得總人數(shù);(2)利用360乘以對應的比例即可求解;(3)利用總人數(shù)6500乘以對應的比例即可求解.(1)這次調查的家長人數(shù)為80÷20%=400人,反對人數(shù)是:400-40-80=280人,;(2)360×=36°;(3)反對中學生帶手機的大約有6500×=4550(名).考點:1.條形統(tǒng)計圖;2.用樣本估計總體;3.扇形統(tǒng)計圖.21、(1)DF=EF+BE.理由見解析;(2)CF=1.【解題分析】(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據(jù)全等三角形的性質得出EF=FG,即可得出答案;(2)根據(jù)旋轉的性質的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據(jù)勾股定理有FG2=FC2+CG2=BE2+FC2;關鍵全等三角形的性質得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;(2)∵∠BAC=90°,AB=AC,∴將△ABE繞點A順時針旋轉90°得△ACG,連接FG,如圖2,∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,在△AGF與△AEF中,,∴△AEF≌△AGF,∴EF=FG,∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.“點睛”本題考查了全等三角形的性質和判定,勾股定理,正方形的性質的應用,正確的作出輔助線構造全等三角形是解題的關鍵,此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.22、1.8米【解題分析】
設PA=PN=x,Rt△APM中求得=1.6x,在Rt△BPM中,解得x=3,MN=MP-NP=0.6x=1.8.【題目詳解】在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,,設PA=PN=x,∵∠MAP=58°,∴=1.6x,在Rt△BPM中,,∵∠MBP=31°,AB=5,∴,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:廣告牌的寬MN的長為1.8米.【題目點撥】熟練掌握三角函數(shù)的定義并能夠靈活運用是解題的關鍵.23、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解題分析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據(jù)平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數(shù)關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54,得20t解得t=12,t=11此時點P的坐標為(1,﹣2),Q點的坐標為(2,﹣32若R點存在,分情況討論:(i)假設R在BQ的右邊,如圖所示,這時QR=PB,RQ∥PB,則R的橫坐標為3,R的縱坐標為﹣32即R(3,﹣32代入y=1∴這時存在R(3,﹣32(ii)假設R在QB的左邊時,這時PR=QB,PR∥QB,則R(1,﹣32)代入,y=左右不相等,∴R不在拋物線上.(1分)綜上所述,存點一點R(3,﹣32答:存在,R點的坐標是(3,﹣32(3)如圖,M′B=M′A,∵A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,理由是:∵MA=MB,若M不為L與DB的交點,則三點B、M、D構成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距離之差為|DB|時,差值最大,設直線BD的解析式是y=kx+b,把B、D的坐標代入得:,解得:k=23,b=﹣10∴y=23x﹣10拋物線y=1把x=1代入得:y=﹣8∴M的坐標為(1,﹣83答:M的坐標為(1,﹣83考點:二次函數(shù)綜合題.24、(1)詳見解析;(2)1.【解題分析】
(1)根據(jù)平行線的性質得到∠ADB=∠CBD,根據(jù)角平分線定義得到∠ABD=∠CBD,等量代換得到∠ADB=∠ABD,根據(jù)等腰三角形的判定定理得到AD=AB,根據(jù)菱形的判定即可得到結論;(2)由垂直的定義得到∠BDE=90°,等量代換得到∠CDE=∠E,根據(jù)等腰三角形的判定得到CD=CE=BC,根據(jù)勾股定理得到DE==6,于是得到結論.【題目詳解】(1)證明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵BA=BC,∴AD=BC,∴四邊形ABCD是平行四邊形,∵BA=BC,∴四邊形ABCD是菱形;(2)解:∵DE⊥BD,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE==6,∵四邊形ABCD是菱形,∴AD=AB=BC=5,∴四邊形ABED的周長=AD+AB+BE+DE=1.【題目點撥】本題考查了菱形的判定和性質,角平分線定義,平行線的性質,勾股定理,等腰三角形的性質,正確的識別圖形是解題的關鍵.25、(1)證明見解析;(2)四邊形ADCN是矩形,理由見解析.【解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職種子生產與經營(種子生產技術)試題及答案
- 2025年中職機電技術(設備調試)試題及答案
- 2025年大學倫理學(生命倫理研究)試題及答案
- 2025年中職汽車車身修復(汽車鈑金技術)試題及答案
- 國開電大??啤豆芾韺W基礎》期末紙質考試判斷題題庫2026珍藏版
- 2026廣西北海市海城區(qū)海洋局招聘編外人員1人備考題庫及答案詳解參考
- 2026四川成都軌道交通集團有限公司招聘3人備考題庫及答案詳解(奪冠系列)
- 2026年中國水產科學研究院第一批招聘備考題庫(78人)及一套完整答案詳解
- 2025年下學期望城二中高一期末考試語文試題-教師用卷
- 2026廣西壯族自治區(qū)計量檢測研究院招聘2人備考題庫及答案詳解參考
- 日文常用漢字表
- QC003-三片罐206D鋁蓋檢驗作業(yè)指導書
- 舞臺機械的維護與保養(yǎng)
- 運輸工具服務企業(yè)備案表
- 醫(yī)院藥房醫(yī)療廢物處置方案
- 高血壓達標中心標準要點解讀及中心工作進展-課件
- 金屬眼鏡架拋光等工藝【省一等獎】
- 《藥品經營質量管理規(guī)范》的五個附錄
- 試論如何提高小學音樂課堂合唱教學的有效性(論文)
- 機房設備操作規(guī)程
- ASMEBPE介紹專題知識
評論
0/150
提交評論