版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆雅安市重點中學(xué)高一數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在四邊形中,若,且,則四邊形是()A.矩形 B.菱形 C.正方形 D.梯形2.已知全集,則集合A. B. C. D.3.若對任意的正數(shù)a,b滿足,則的最小值為A.6 B.8 C.12 D.244.定義運算為執(zhí)行如圖所示的程序框圖輸出的值,則式子的值是A.-1 B.C. D.5.已知數(shù)列{an}滿足且,則的值是()A.-5 B.- C.5 D.6.如圖是正方體的展開圖,則在這個正方體中:①與平行;②與是異面直線;③與成60°角;④與垂直.以上四個命題中,正確命題的序號是A.①②③ B.②④ C.③④ D.②③④7.已知、都是單位向量,則下列結(jié)論正確的是()A. B. C. D.8.某船從處向東偏北方向航行千米后到達(dá)處,然后朝西偏南的方向航行6千米到達(dá)處,則處與處之間的距離為()A.千米 B.千米 C.3千米 D.6千米9.已知,,且,則()A.1 B.2 C.3 D.410.已知平面平面,直線平面,直線平面,,在下列說法中,①若,則;②若,則;③若,則.正確結(jié)論的序號為()A.①②③ B.①② C.①③ D.②③二、填空題:本大題共6小題,每小題5分,共30分。11.已知變量,滿足,則的最小值為________.12.若數(shù)列滿足(),且,,__.13.不等式的解集為________14.某公司租地建倉庫,每月土地占用費(萬元)與倉庫到車站的距離(公里)成反比.而每月庫存貨物的運費(萬元)與倉庫到車站的距離(公里)成正比.如果在距車站公里處建倉庫,這兩項費用和分別為萬元和萬元,由于地理位置原因.倉庫距離車站不超過公里.那么要使這兩項費用之和最小,最少的費用為_____萬元.15.與終邊相同的最小正角是______.16.已知函數(shù)那么的值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)已知圖象的相鄰兩條對稱軸的距離為,求正數(shù)的值;(2)已知函數(shù)在區(qū)間上是增函數(shù),求正數(shù)的最大值.18.我市某商場銷售小飾品,已知小飾品的進(jìn)價是每件3元,且日均銷售量件與銷售單價元可以用這一函數(shù)模型近似刻畫.當(dāng)銷售單價為4元時,日均銷售量為400件,當(dāng)銷售單價為8元時,日均銷售量為240件.試求出該小飾品的日均銷售利潤的最大值及此時的銷售單價.19.已知向量.(1)若,且,求實數(shù)的值;(2)若,且與的夾角為,求實數(shù)的值.20.已知方程有兩個實根,記,求的值.21.如圖,在三棱柱中,是邊長為4的正三角形,側(cè)面是矩形,分別是線段的中點.(1)求證:平面;(2)若平面平面,,求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
根據(jù)向量相等可知四邊形為平行四邊形;由數(shù)量積為零可知,從而得到四邊形為矩形.【題目詳解】,可知且四邊形為平行四邊形由可知:四邊形為矩形本題正確選項:【題目點撥】本題考查相等向量、垂直關(guān)系的向量表示,屬于基礎(chǔ)題.2、C【解題分析】
直接利用集合補集的定義求解即可.【題目詳解】因為全集,所以0,2屬于全集且不屬于集合A,所以集合,故選:C.【題目點撥】本題主要考查集合補集的定義,屬于基礎(chǔ)題.3、C【解題分析】
利用“1”的代換結(jié)合基本不等式求最值即可【題目詳解】∵兩個正數(shù)a,b滿足即a+3b=1則=當(dāng)且僅當(dāng)時取等號.故選C【題目點撥】本題考查了基本不等式求最值,巧用“1”的代換是關(guān)鍵,屬于基礎(chǔ)題.4、D【解題分析】
由已知的程序框圖可知,本程序的功能是:計算并輸出分段函數(shù)的值,由此計算可得結(jié)論.【題目詳解】由已知的程序框圖可知:本程序的功能是:計算并輸出分段函數(shù)的值,可得,因為,所以,,故選D.【題目點撥】本題主要考查條件語句以及算法的應(yīng)用,屬于中檔題.算法是新課標(biāo)高考的一大熱點,其中算法的交匯性問題已成為高考的一大亮,這類問題常常與函數(shù)、數(shù)列、不等式等交匯自然,很好地考查考生的信息處理能力及綜合運用知識解決問題的能力,解決算法的交匯性問題的方:(1)讀懂程序框圖、明確交匯知識,(2)根據(jù)給出問題與程序框圖處理問題即可.5、A【解題分析】試題分析:即數(shù)列是公比為3的等比數(shù)列.考點:1.等比數(shù)列的定義及基本量的計算;2.對數(shù)的運算性質(zhì).6、C【解題分析】
將正方體的展開圖還原為正方體后,即可得到所求正確結(jié)論.【題目詳解】將正方體的展開圖還原為正方體ABCD﹣EFMN后,可得AF,CN異面;BM,AN平行;連接AN,NF,可得∠FAN為AF,BM所成角,且為60°;BN⊥DE,DE⊥AB可得DE⊥平面ABN,可得DE⊥BN,可得③④正確,故選C.【題目點撥】本題考查展開圖與空間幾何體的關(guān)系,考查空間線線的位置關(guān)系的判斷,屬于基礎(chǔ)題.7、B【解題分析】
由、都是單位向量,由向量的數(shù)量積和共線的定義可判斷出正確選項.【題目詳解】由、都是單位向量,所以.設(shè)、的夾角為.則,所以A,D不正確.當(dāng)時,、同向或反向,所以C不正確.,所以B正確.故選:B【題目點撥】本題考查了單位向量的概念,屬于概念考查題,應(yīng)該掌握.8、B【解題分析】
通過余弦定理可得答案.【題目詳解】設(shè)處與處之間的距離為千米,由余弦定理可得,則.【題目點撥】本題主要考查余弦定理的實際應(yīng)用,難度不大.9、D【解題分析】
根據(jù)向量的平行可得4m=3m+4,解得即可.【題目詳解】,,且,則,解得,故選D.【題目點撥】本題考查了向量平行的充要條件,考查了運算求解能力以及化歸與轉(zhuǎn)化思想,屬于基礎(chǔ)題.10、D【解題分析】
由面面垂直的性質(zhì)和線線的位置關(guān)系可判斷①;由面面垂直的性質(zhì)定理可判斷②;由線面垂直的性質(zhì)定理可判斷③.【題目詳解】平面平面.直線平面,直線平面,,①若,可得,可能平行,故①錯誤;②若,由面面垂直的性質(zhì)定理可得,故②正確;③若,可得,故③正確.故選:D.【題目點撥】本題考查空間線線和線面、面面的位置關(guān)系,主要是平行和垂直的判斷和性質(zhì),考查推理能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、0【解題分析】
畫出可行域,分析目標(biāo)函數(shù)得,當(dāng)在y軸上截距最小時,即可求出的最小值.【題目詳解】作出可行域如圖:聯(lián)立得化目標(biāo)函數(shù)為,由圖可知,當(dāng)直線過點時,在y軸上的截距最小,有最小值為,故填.【題目點撥】本題主要考查了簡單的線性規(guī)劃,屬于中檔題.12、1【解題分析】
由數(shù)列滿足,即,得到數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列,利用等比數(shù)列的極限的求法,即可求解.【題目詳解】由題意,數(shù)列滿足,即,又由,,所以數(shù)列的奇數(shù)項構(gòu)成首項為1,公比為,偶數(shù)項構(gòu)成首項為,公比為的等比數(shù)列,當(dāng)為奇數(shù)時,可得,當(dāng)為偶數(shù)時,可得.所以.故答案為:1.【題目點撥】本題主要考查了等比數(shù)列的定義,以及無窮等比數(shù)列的極限的計算,其中解答中得出數(shù)列的奇數(shù)項和偶數(shù)項分別構(gòu)成公比為的等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.13、【解題分析】因為所以,即不等式的解集為.14、8.2【解題分析】
設(shè)倉庫與車站距離為公里,可得出、關(guān)于的函數(shù)關(guān)系式,然后利用雙勾函數(shù)的單調(diào)性求出的最小值.【題目詳解】設(shè)倉庫與車站距離為公里,由已知,.費用之和,求中,由雙勾函數(shù)的單調(diào)性可知,函數(shù)在區(qū)間上單調(diào)遞減,所以,當(dāng)時,取得最小值萬元,故答案為:.【題目點撥】本題考查利用雙勾函數(shù)求最值,解題的關(guān)鍵就是根據(jù)題意建立函數(shù)關(guān)系式,再利用基本不等式求最值時,若等號取不到時,可利用相應(yīng)的雙勾函數(shù)的單調(diào)性來求解,考查分析問題和解決問題的能力,屬于中等題.15、【解題分析】
根據(jù)終邊相同的角的定義以及最小正角的要求,可確定結(jié)果.【題目詳解】因為,所以與終邊相同的最小正角是.故答案為:.【題目點撥】本題主要考查終邊相同的角,屬于基礎(chǔ)題.16、【解題分析】試題分析:因為函數(shù)所以==.考點:本題主要考查分段函數(shù)的概念,計算三角函數(shù)值.點評:基礎(chǔ)題,理解分段函數(shù)的概念,代入計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)1;(2).【解題分析】
(1)由二倍角公式可化函數(shù)為,結(jié)合正弦函數(shù)的性質(zhì)可得;(2)先求得的增區(qū)間,其中,此區(qū)間應(yīng)包含,這樣可得之間的不等關(guān)系,利用>0,得的范圍,從而得,最終可得的最大值.【題目詳解】解法1:(1)因為圖象的相鄰兩條對稱軸的距離為,所以的最小正周期為,所以正數(shù).(2)因為,所以由得單調(diào)遞增區(qū)間為,其中.由題設(shè),于是,得因為,所以,,因為,所以,所以,正數(shù)的最大值為.解法2:(1)同解法1.(2)當(dāng)時,因為在單調(diào)遞增,因為,所以于是,解得,故正數(shù)的最大值為.【題目點撥】本題考查二倍角公式,考查三角函數(shù)的性質(zhì).解題關(guān)鍵是化函數(shù)為一個角的一個三角函數(shù)形式,即形式,然后結(jié)合正弦函數(shù)的性質(zhì)求解.18、當(dāng)該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【解題分析】
根據(jù)已知條件,求出,利潤,轉(zhuǎn)化為求二次函數(shù)的最大值,即可求解.【題目詳解】解:由題意,得解得所以日均銷售量件與銷售單價元的函數(shù)關(guān)系為.日均銷售利潤.當(dāng),即時,.所以當(dāng)該小飾品銷售單價定位8.5元時,日均銷售利潤的最大,為1210元.【題目點撥】本題考查函數(shù)實際應(yīng)用問題,確定函數(shù)解析式是關(guān)鍵,考查二次函數(shù)的最值,屬于基礎(chǔ)題19、(1);(2).【解題分析】
(1)根據(jù)平面向量加法和數(shù)乘的坐標(biāo)表示公式、數(shù)量積的坐標(biāo)表示公式,結(jié)合兩個互相垂直的平面向量數(shù)量積為零,進(jìn)行求解即可;(2)利用平面向量夾角公式進(jìn)行求解即可.【題目詳解】(1)當(dāng)時,.因為,所以;(2)當(dāng)時,所以有,因為與的夾角為,所以有.【題目點撥】本題考查了平面向量運算的坐標(biāo)表示公式,考查了平面向量夾角公式,考查了數(shù)學(xué)運算能力.20、【解題分析】
求出的值和的范圍即可【題目詳解】因為,所以又有兩個實根所以所以因為所以,所以所以所以故答案為:【題目點撥】1.要清楚反
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三措施施工方案(3篇)
- 長沙市K郡雙語實驗中學(xué)2026屆數(shù)學(xué)高二上期末學(xué)業(yè)水平測試模擬試題含解析
- 2026屆福建省長汀一中高二生物第一學(xué)期期末統(tǒng)考試題含解析
- 罕見腫瘤的個體化治療治療目標(biāo)設(shè)定原則
- 2026廣東云浮市中醫(yī)院招聘15人備考題庫帶答案詳解
- 油品運輸公司財務(wù)制度
- 廢品財務(wù)制度
- 建立小微企業(yè)財務(wù)制度
- 鄉(xiāng)村一體化后財務(wù)制度
- 動物園財務(wù)制度
- 藥廠新員工培訓(xùn)課件
- 放射性皮膚損傷護(hù)理指南
- 2025年青島市中考數(shù)學(xué)試卷(含答案解析)
- 下肢動脈栓塞的護(hù)理
- 總經(jīng)理聘用管理辦法
- 長護(hù)險護(hù)理培訓(xùn)
- DB34∕T 4648-2023 鋼結(jié)構(gòu)橋梁頂推施工技術(shù)規(guī)程
- 2025年時政100題(附答案)
- 貸款用別人名字協(xié)議書
- 寺院圍墻修繕方案(3篇)
- 麻醉科PDCA持續(xù)改進(jìn)麻醉術(shù)后鎮(zhèn)痛
評論
0/150
提交評論