版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023年二次根式的乘除教案二次根式的乘除教案
一、內(nèi)容和內(nèi)容解析
1.內(nèi)容
二次根式的除法法則及其逆用,最簡二次根式的概念。
2.內(nèi)容解析
二次根式除法法則及商的算術(shù)平方根的探究,最簡二次根式的提出,為二次根式的運(yùn)算指明白方向,學(xué)習(xí)了除法法則后,就有比較豐富的運(yùn)算法則和公式依據(jù),將一個(gè)二次根式化成最簡二次根式,是加減運(yùn)算的基礎(chǔ).
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):二次根式的除法法則和商的算術(shù)平方根的性質(zhì),最簡二次根式.
二、目標(biāo)和目標(biāo)解析
1.教學(xué)目標(biāo)
(1)利用歸納類比的方法得出二次根式的除法法則和商的算術(shù)平方根的性質(zhì);
(2)會(huì)進(jìn)行簡潔的二次根式的除法運(yùn)算;
(3)理解最簡二次根式的概念.
2.目標(biāo)解析
(1)學(xué)生能通過運(yùn)算,類比二次根式的乘法法則,發(fā)覺并描述二次根式的除法法則;
(2)學(xué)生能理解除法法則逆用的意義,結(jié)合二次根式的概念、性質(zhì)、乘除法法則,對(duì)簡潔的二次根式進(jìn)行運(yùn)算.
(3)通過視察二次根式的運(yùn)算結(jié)果,理解最簡二次根式的特征,能將二次根式的運(yùn)算結(jié)果化為最簡二次根式.
三、教學(xué)問題診斷分析
本節(jié)內(nèi)容主要是在做二次根式的除法運(yùn)算時(shí),分母含根號(hào)的處理方式上,學(xué)生可能會(huì)出現(xiàn)困難或簡單失誤,在除法運(yùn)算中,可以先計(jì)算后利用商的算術(shù)平方根的性質(zhì)來進(jìn)行,也可以先利用分式的性質(zhì),去掉分母中的根號(hào),再結(jié)合乘法法則和積的算術(shù)平方根的性質(zhì)來進(jìn)行.二次根式的除法與分式的運(yùn)算類似,假如分子、分母中含有相同的因式,可以干脆約去,以簡化運(yùn)算.教學(xué)中不能只是列舉題型,應(yīng)以各級(jí)各類習(xí)題為載體,引導(dǎo)學(xué)生把握運(yùn)算過程,估計(jì)運(yùn)算結(jié)果,明確運(yùn)算方向.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的除法法則與商的算術(shù)平方根的性質(zhì)之間的關(guān)系和應(yīng)用.
四、教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)提問,探究規(guī)律
問題1二次根式的乘法法則是什么內(nèi)容?化簡二次根式的一般步驟怎樣?
師生活動(dòng)學(xué)生回答。
讓學(xué)生回憶探究乘法法則的過程,類比該過程,學(xué)生可以探究除法法則.
五、目標(biāo)檢測(cè)設(shè)計(jì)
二次根式的乘除教案
1.教學(xué)目標(biāo)
(1)經(jīng)驗(yàn)二次根式的乘法法則和積的算術(shù)平方根的性質(zhì)的形成過程;會(huì)進(jìn)行簡潔的二次根式的乘法運(yùn)算;
(2)會(huì)用公式化簡二次根式.
2.目標(biāo)解析
(1)學(xué)生能通過計(jì)算發(fā)覺規(guī)律并對(duì)其進(jìn)行一般化的推廣,得出乘法法則的內(nèi)容;
(2)學(xué)生能利用二次根式的乘法法則和積的算術(shù)平方根的性質(zhì),化簡二次根式.
教學(xué)問題診斷分析
本節(jié)課的學(xué)習(xí)中,學(xué)生在得出乘法法則和積的算術(shù)平方根的性質(zhì)后,對(duì)于何時(shí)該選用何公式簡化運(yùn)算感到困難.運(yùn)算習(xí)慣的養(yǎng)成與符號(hào)意識(shí)的養(yǎng)成、運(yùn)算實(shí)力的形成緊密相關(guān),由于該內(nèi)容與以前學(xué)過的實(shí)數(shù)內(nèi)容有較多的聯(lián)系,例如,整式中的乘法公式在二次根式的運(yùn)算中也成立,在教學(xué)中,要多從聯(lián)系性上下力氣.,培育學(xué)生良好的運(yùn)算習(xí)慣.
在教學(xué)時(shí),通過實(shí)例運(yùn)算,對(duì)于將一個(gè)二次根式化為最簡二次根式,一般有兩種狀況:(1)假如被開方數(shù)是分?jǐn)?shù)或分式(包括小數(shù)),可以采納干脆利用分式的性質(zhì),結(jié)合二次根式的性質(zhì)進(jìn)行化簡(例見教科書例6解法1),也可以先寫成算術(shù)平方根的商的形式,再利用分式的性質(zhì)處理分母的根號(hào)(例見教科書例6解法2);(2)假如被開方數(shù)不含分母,可以先將它分解因數(shù)或分解因式,然后吧開得盡方的因數(shù)或因式開出來,從而將式子化簡.
本節(jié)課的教學(xué)難點(diǎn)為:二次根式的性質(zhì)及乘法法則的正確應(yīng)用和二次根式的化簡.
教學(xué)過程設(shè)計(jì)
1.復(fù)習(xí)引入,探究新知
我們前面已經(jīng)學(xué)習(xí)了二次根式的概念和性質(zhì),本節(jié)課起先我們要學(xué)習(xí)二次根式的.乘除.本節(jié)課先學(xué)習(xí)二次根式的乘法.
問題1什么叫二次根式?二次根式有哪些性質(zhì)?
師生活動(dòng)學(xué)生回答。
乘法運(yùn)算和二次根式的化簡須要用到二次根式的性質(zhì).
問題2教材第6頁“探究”欄目,計(jì)算結(jié)果如何?有何規(guī)律?
師生活動(dòng)學(xué)生計(jì)算、思索并嘗試歸納,引導(dǎo)學(xué)生用自己的語言描述乘法法則的內(nèi)容.
學(xué)生在自主探究的過程中發(fā)覺規(guī)律,運(yùn)用類比思想,由特別到一般地,采納不完全歸納的方法得出二次根式的乘法法則.要求學(xué)生用數(shù)學(xué)語言和文字分別描述法則,以培育學(xué)生的符號(hào)意識(shí).
2.視察比較,理解法則
問題3簡潔的根式運(yùn)算.
師生活動(dòng)學(xué)生動(dòng)手操作,老師檢驗(yàn).
問題4二次根式的乘除成立的條件是什么?等式反過來有什么價(jià)值?
師生活動(dòng)學(xué)生回答,給出正確答案后,老師給出積的算術(shù)平方根的性質(zhì).
讓學(xué)生運(yùn)用法則進(jìn)行簡潔的二次根式的乘法運(yùn)算,以檢驗(yàn)法則的駕馭狀況.乘法法則反過來就是積的算術(shù)平方根的性質(zhì),性質(zhì)是為運(yùn)算服務(wù)的,積的算術(shù)平方根的性質(zhì)將積的算術(shù)平方根分解成幾個(gè)因數(shù)或因式的算術(shù)平方根的積,利用整式的運(yùn)算法則、乘法公式等可以簡化二次根式,培育學(xué)生的運(yùn)算實(shí)力.
3.例題示范,學(xué)會(huì)應(yīng)用
例1化簡:(1)二次根式的乘除;(2)二次根式的乘除.
師生活動(dòng)提問:你是怎么理解例(1)的?
假如學(xué)生回答不完善,再追問:這個(gè)問題中,就干脆將結(jié)果算成二次根式的乘除可以嗎?你認(rèn)為本題怎樣才達(dá)到了化簡的效果?
師生合作回答上述問題.對(duì)于根式運(yùn)算的最終結(jié)果,一般被開方數(shù)中有開得盡方的因數(shù)或因式,應(yīng)依據(jù)二次根式的性質(zhì)二次根式的乘除將其移出根號(hào)外.
再提問:你能仿照第(1)題的解答,能自己解決(2)嗎?
通過運(yùn)算,培育學(xué)生的運(yùn)算實(shí)力,明確二次根式化簡的方向.積的算術(shù)平方根的性質(zhì)可以進(jìn)行二次根式的化簡.
例2計(jì)算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除
師生活動(dòng)學(xué)生計(jì)算,老師檢驗(yàn).
(1)在被開方數(shù)相乘的時(shí)候,就可以考慮因數(shù)或因式分解,由二次根式的乘除干脆可得二次根式的乘除而不必先寫成二次根式的乘除再分解;
(2)二次根式的乘法運(yùn)算類似于整式的乘法運(yùn)算,交換律、結(jié)合律都是適用的.對(duì)于根號(hào)外有系數(shù)的根式在相乘時(shí),可以將系數(shù)先相乘作為積的系數(shù),再對(duì)根式進(jìn)行運(yùn)算;
(3)例(3)的運(yùn)算是選學(xué)內(nèi)容.讓學(xué)有余力的學(xué)生學(xué)到“根號(hào)下為字母的二次根式”的運(yùn)算.本題先利用積的算術(shù)平方根的性質(zhì),得到二次根式的乘除,然后利用二次根式的乘法法則,變成二次根式的乘除,由于二次根式的乘除可以推斷二次根式的乘除,因此干脆將x移出根號(hào)外.
引導(dǎo)學(xué)生剛好總結(jié),強(qiáng)調(diào)利用運(yùn)算律進(jìn)行運(yùn)算,利用乘法公式簡化運(yùn)算.讓學(xué)生相識(shí)到,二次根式是一類特別的實(shí)數(shù),因此滿意實(shí)數(shù)的運(yùn)算律,關(guān)于整式運(yùn)算的公式和方法也適用.
教材中雖然指明,如未特殊說明,本章中全部的字母都表示正數(shù),但仍應(yīng)強(qiáng)調(diào),看到根號(hào)就要留意被開方數(shù)的符號(hào).可以依據(jù)二次根式的概念對(duì)字母的符號(hào)進(jìn)行推斷,在移出根號(hào)時(shí)正確處理符號(hào)問題.
4.鞏固概念,學(xué)以致用
練習(xí):教科書第7頁練習(xí)第1題.第10頁習(xí)題16.2第1題.
鞏固性練習(xí),同時(shí)檢驗(yàn)乘法法則的駕馭狀況.
5.歸納小結(jié),反思提高
師生共同回顧本節(jié)課所學(xué)內(nèi)容,并請(qǐng)學(xué)生回答以下問題:
(1)你能說明二次根式的乘法法則是如何得出的嗎?
(2)你能說明乘法法則逆用的意義嗎?
(3)化簡二次根式的基本步驟是怎樣?一般對(duì)最終結(jié)果有何要求?
6.布置作業(yè):教科書第7頁第2、3題.習(xí)題16.2第1,6題.
五、目標(biāo)檢測(cè)設(shè)計(jì)
1.下列各式中,肯定能成立的是()
A.二次根式的乘除B.二次根式的乘除
C.二次根式的乘除D.二次根式的乘除
考查二次根式的概念和性質(zhì),這是進(jìn)行二次根式的乘法運(yùn)算的基礎(chǔ).
2.化簡二次根式的乘除__________
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年稅務(wù)申報(bào)(企業(yè)所得稅申報(bào))試題及答案
- 2025年中職道路與橋梁工程技術(shù)(道路施工管理)試題及答案
- 2025年中職烹飪工藝與營養(yǎng)(中式烹飪)試題及答案
- 巴松措介紹教學(xué)課件
- 2026年虎林市中醫(yī)醫(yī)院公開招聘編外人員7人備考題庫及1套參考答案詳解
- 煉鋼廠安全生產(chǎn)體系三項(xiàng)制度匯編
- 會(huì)議議程調(diào)整與臨時(shí)決策制度
- 2026年儲(chǔ)糧化學(xué)藥劑管理與使用試題含答案
- 2026年垃圾分類督導(dǎo)員考試題及核心答案
- 2026年十七冶中層考試裝配式建筑項(xiàng)目管理專項(xiàng)練習(xí)與總結(jié)含答案
- 安措費(fèi)清單完整版本
- 老年人綜合能力評(píng)估施過程-評(píng)估工作及填寫規(guī)范
- 蒙牛乳制品分公司倉儲(chǔ)部管理制度培訓(xùn)課件
- 工程制圖習(xí)題集答案
- 食品安全管理制度打印版
- 多聯(lián)機(jī)安裝施工方案
- 煤礦副斜井維修安全技術(shù)措施
- 公共視頻監(jiān)控系統(tǒng)運(yùn)營維護(hù)要求
- 四川大學(xué)宣傳介紹PPT
- 小學(xué)數(shù)學(xué)人教版六年級(jí)上冊(cè)全冊(cè)電子教案
- 阿司匹林在一級(jí)預(yù)防中應(yīng)用回顧
評(píng)論
0/150
提交評(píng)論