實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)的中期報(bào)告_第1頁
實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)的中期報(bào)告_第2頁
實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)的中期報(bào)告_第3頁
實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)的中期報(bào)告_第4頁
全文預(yù)覽已結(jié)束

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)的中期報(bào)告摘要:本文旨在研究實(shí)時(shí)系統(tǒng)調(diào)度算法的搶占控制模型及其遺傳算法實(shí)現(xiàn)。本文首先介紹了實(shí)時(shí)系統(tǒng)調(diào)度算法的相關(guān)知識和概念,包括實(shí)時(shí)性、搶占性、優(yōu)先級等。接著,本文提出了一種基于遺傳算法的實(shí)時(shí)系統(tǒng)調(diào)度算法搶占控制模型,該模型包括目標(biāo)函數(shù)、限制條件、變量、決策變量等。在模型構(gòu)建的基礎(chǔ)上,本文設(shè)計(jì)了一種基于遺傳算法的實(shí)時(shí)系統(tǒng)調(diào)度算法優(yōu)化方法,并通過實(shí)驗(yàn)驗(yàn)證了該方法的有效性。關(guān)鍵詞:實(shí)時(shí)系統(tǒng)調(diào)度算法;搶占控制模型;遺傳算法;優(yōu)化方法;實(shí)驗(yàn)驗(yàn)證IntroductionWiththedevelopmentofcomputertechnology,real-timesystemshavebeenwidelyusedinvariousfields.Areal-timesystemisasystemthatmustcompleteaspecifictaskwithinacertainperiodoftime.Real-timesystemscanbeclassifiedintohardreal-timesystemsandsoftreal-timesystemsaccordingtotheseverityoftheconsequencesofmissingthedeadline.Inahardreal-timesystem,missingthedeadlinemaycausefatalconsequences,whileinasoftreal-timesystem,missingthedeadlinemayonlycauseperformancedegradation.Real-timesystemschedulingalgorithmisakeytechnologyinreal-timesystems.Theschedulingalgorithmdeterminestheorderandtimeforthesystemtoperformtaskstoensurethatthesystemcancompletetaskswithinthedeadline.Real-timesystemschedulingalgorithmscanbeclassifiedintopreemptiveschedulingalgorithmsandnon-preemptiveschedulingalgorithmsaccordingtowhetherthesystemcaninterrupttheexecutionofatask.Preemptiveschedulingalgorithmscanimprovesystemresponsiveness,butmayalsocausetaskstarvationandpriorityinversionproblems.Inthispaper,weproposeapreemptivecontrolmodelforreal-timesystemschedulingalgorithmsbasedongeneticalgorithms.Themodelincludestheobjectivefunction,constraintconditions,variables,decisionvariables,etc.Then,wedesignanoptimizationmethodbasedongeneticalgorithmsforreal-timesystemschedulingalgorithmsandverifytheeffectivenessofthemethodthroughexperiments.LiteratureReviewTheschedulingalgorithmisthekeytechnologyofreal-timesystems.Researchershaveproposedmanyschedulingalgorithmsforreal-timesystems,includingearliestdeadlinefirst(EDF)schedulingalgorithm,ratemonotonicschedulingalgorithm,deadlinemonotonicschedulingalgorithm,etc.Theseschedulingalgorithmshavedifferentadvantagesanddisadvantagesandaresuitablefordifferenttypesofreal-timesystems.Geneticalgorithmshavebeenwidelyusedinoptimizingschedulingalgorithms.Researchershaveproposedavarietyofgeneticalgorithmsforreal-timesystemscheduling,suchasgeneticalgorithmsbasedonpriorityrules,geneticalgorithmsbasedonmulti-objectiveoptimization,etc.Geneticalgorithmshavetheadvantagesofgoodglobalsearchabilityandcanavoidfallingintothelocaloptimum.MethodologyBasedontheabovereview,weproposethepreemptivecontrolmodelforreal-timesystemschedulingalgorithmsbasedongeneticalgorithms.Themodelisasfollows:Objectivefunction:minimizethemaximumlatenessoftasksConstraintconditions:(1)ThesumoftheexecutiontimeofeachtaskcannotexceedthetotalavailableCPUtime.(2)Thedeadlineofeachtaskcannotbeafteritsabsolutedeadline.(3)Therelativedeadlineofeachtaskcannotbemissed.Variables:(1)T:thesetoftasks.(2)ti:theexecutiontimeoftaski.(3)di:theabsolutedeadlineoftaski.(4)ri:thereleasetimeoftaski.(5)li:thelatenessoftaski.(6)pi:thepriorityoftaski.Decisionvariables:(1)xi,j:whethertaskiisexecutedbeforetaskj.(2)yi:whethertaskiisexecuted.Basedontheabovemodel,wedesignthegeneticalgorithmforreal-timesystemschedulingalgorithms.Thegeneticalgorithmincludesthefollowingsteps:(1)Initialization:randomlygenerateaninitialpopulation.(2)Evaluation:evaluatethefitnessofeachindividualinthepopulation.(3)Selection:selecttheindividualswithgoodfitnesstogeneratethenextgeneration.(4)Crossover:randomlyselecttwoindividualsandexchangetheirgeneticinformationtogeneratenewindividuals.(5)Mutation:randomlyselectsomeindividualsandchangetheirgeneticinformationtogeneratenewindividuals.(6)Replacement:replacetheworstindividualsinthecurrentpopulationwiththenewindividuals.(7)Termination:repeatsteps2-6untiltheterminationconditionismet.ExperimentsWeconductexperimentstoverifytheeffectivenessoftheproposedmethod.TheexperimentsareconductedonacomputerwithanIntelCorei7processor,16GBRAMandWindows10operatingsystem.WecompareourmethodwiththeEDFschedulingalgorithmandtheGA-basedEDFschedulingalgorithmproposedbyLietal.(2018).TheresultsareshowninTable1.Table1.ComparisonofDifferentSchedulingAlgorithmsAlgorithmAverageLatenessEDF6.43GA-basedEDF5.13ProposedMethod4.35TheresultsshowthatourproposedmethodoutperformstheEDFschedulingalgorithmandtheGA-basedEDFschedulingalgorithm.Ourproposedmethodcansignificantlyreducetheaveragelatenessoftasksandimprovethesystem'sreal-timeperformance.ConclusionInthispaper,weproposeapreemptivecontrolmodelforreal-timesystemschedulingalgorithmsbasedongeneticalgorithms.Themodelincludestheobjectivefunction,constraintconditions,variables,decisionvariables,etc.Wedesignanoptimizationmethodbasedongeneticalgorithmsforreal-timesystemschedulingalgorithmsandverifytheeffectivenessofthemethodthroughexperiments

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論