版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海市浦東新區(qū)洋涇中學(xué)2024屆高一下數(shù)學(xué)期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.點(diǎn)(4,0)關(guān)于直線5x+4y+21=0的對(duì)稱點(diǎn)是().A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)2.執(zhí)行如圖所示的程序框圖,則輸出的值為()A.7 B.6 C.5 D.43.已知兩條直線與兩個(gè)平面,給出下列命題:①若,則;②若,則;③若,則;④若,則;其中正確的命題個(gè)數(shù)為A.1 B.2 C.3 D.44.設(shè)的三個(gè)內(nèi)角成等差數(shù)列,其外接圓半徑為2,且有,則三角形的面積為()A. B. C.或 D.或5.在△ABC中,若asinA+bsinB<csinC,則△ABC是()A.鈍角三角形 B.直角三角形 C.銳角三角形 D.都有可能6.已知角的頂點(diǎn)在原點(diǎn),始邊與軸的正半軸重合,終邊落在射線上,則()A. B. C. D.7.如圖,圓的半徑為1,是圓上的定點(diǎn),是圓上的動(dòng)點(diǎn),角的始邊為射線,終邊為射線,過(guò)點(diǎn)作直線的垂線,垂足為,將點(diǎn)到直線的距離表示成的函數(shù),則在上的圖象大致為()A. B.C. D.8.在等差數(shù)列中,已知,數(shù)列的前5項(xiàng)的和為,則()A. B. C. D.9.已知函數(shù),若,,則()A. B.2 C. D.10.若直線與平面相交,則()A.平面內(nèi)存在無(wú)數(shù)條直線與直線異面B.平面內(nèi)存在唯一的一條直線與直線平行C.平面內(nèi)存在唯一的一條直線與直線垂直D.平面內(nèi)的直線與直線都相交二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)扇形的半徑長(zhǎng)為,面積為,則扇形的圓心角的弧度數(shù)是12.設(shè)()則數(shù)列的各項(xiàng)和為________13.函數(shù)的最小正周期是________.14.對(duì)于正項(xiàng)數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項(xiàng)公式為_____.15.在Rt△ABC中,∠B=90°,BC=6,AB=8,點(diǎn)M為△ABC內(nèi)切圓的圓心,過(guò)點(diǎn)M作動(dòng)直線l與線段AB,AC都相交,將△ABC沿動(dòng)直線l翻折,使翻折后的點(diǎn)A在平面BCM上的射影P落在直線BC上,點(diǎn)A在直線l上的射影為Q,則的最小值為_____.16.已知數(shù)列的前n項(xiàng)和為,,且(),記(),若對(duì)恒成立,則的最小值為__.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知圓與圓:關(guān)于直線對(duì)稱.(1)求圓的標(biāo)準(zhǔn)方程;(2)已知點(diǎn),若與直線垂直的直線與圓交于不同兩點(diǎn)、,且是鈍角,求直線在軸上的截距的取值范圍.18.△ABC的內(nèi)角A,B,C所對(duì)邊分別為,已知△ABC面積為.(1)求角C;(2)若D為AB中點(diǎn),且c=2,求CD的最大值.19.在中,內(nèi)角,,的對(duì)邊分別為,,.已知,,且的面積為.(1)求的值;(2)求的周長(zhǎng).20.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點(diǎn)的縱坐標(biāo)為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對(duì)稱軸方程.21.已知函數(shù),(,,)的部分圖象如圖所示,其中點(diǎn)是圖象的一個(gè)最高點(diǎn).(Ⅰ)求函數(shù)的解析式;(Ⅱ)已知且,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】試題分析:設(shè)點(diǎn)(4,0)關(guān)于直線5x+4y+21=0的對(duì)稱點(diǎn)是,則點(diǎn)在直線5x+4y+21=0上,將選項(xiàng)代入就可排除A,B,C,答案為D考點(diǎn):點(diǎn)關(guān)于直線對(duì)稱,排除法的應(yīng)用2、C【解析】
由流程圖循環(huán)4次,輸出,即可得出結(jié)果..【詳解】初始值,,是,第一次循環(huán):,,是,第二次循環(huán):,,是,第三次循環(huán):,,是,第四次循環(huán):S,,否,輸出.故選C.【點(diǎn)睛】本題考查程序框圖的循環(huán),分析框圖的作用,逐步執(zhí)行即可,屬于基礎(chǔ)題.3、A【解析】
結(jié)合線面平行定理和舉例判斷.【詳解】若,則可能平行或異面,故①錯(cuò)誤;若,則可能與的交線平行,故②錯(cuò)誤;若,則,所以,故③正確;若,則可能平行,相交或異面,故④錯(cuò)誤;故選A.【點(diǎn)睛】本題線面關(guān)系的判斷,主要依據(jù)線面定理和舉例排除.4、C【解析】
的三個(gè)內(nèi)角成等差數(shù)列,可得角A、C的關(guān)系,將已知條件中角C消去,利用三角函數(shù)和差角公式展開即可求出角A的值,再由三角形面積公式即可求得三角形面積.【詳解】的三個(gè)內(nèi)角成等差數(shù)列,則,解得,所以,所以,整理得,則或,因?yàn)椋獾没?①當(dāng)時(shí),;②當(dāng)時(shí),,故選C.【點(diǎn)睛】本題考查了三角形內(nèi)角和定理、等差數(shù)列性質(zhì)、三角函數(shù)和差角公式、三角函數(shù)輔助角公式,綜合性較強(qiáng),屬于中檔題;解題中主要是通過(guò)消元構(gòu)造關(guān)于角A的三角方程,其中利用三角函數(shù)和差角公式和輔助角公式對(duì)式子進(jìn)行化解是解題的關(guān)鍵.5、A【解析】
由正弦定理化已知條件為邊的關(guān)系,然后由余弦定理可判斷角的大?。驹斀狻俊遖sinA+bsinB<csinC,∴,∴,∴為鈍角.故選A.【點(diǎn)睛】本題考查正弦定理與余弦定理,考查三角形形狀的判斷,屬于基礎(chǔ)題.6、D【解析】
在的終邊上取點(diǎn),然后根據(jù)三角函數(shù)的定義可求得答案.【詳解】在的終邊上取點(diǎn),則,根據(jù)三角形函數(shù)的定義得.故選:D【點(diǎn)睛】本題考查了利用角的終邊上的點(diǎn)的坐標(biāo)求三角函數(shù)值,屬于基礎(chǔ)題.7、B【解析】
計(jì)算函數(shù)的表達(dá)式,對(duì)比圖像得到答案.【詳解】根據(jù)題意知:到直線的距離為:對(duì)應(yīng)圖像為B故答案選B【點(diǎn)睛】本題考查了三角函數(shù)的應(yīng)用,意在考查學(xué)生的應(yīng)用能力.8、C【解析】
由,可求出,結(jié)合,可求出及.【詳解】設(shè)數(shù)列的前項(xiàng)和為,公差為,因?yàn)?,所以,則,故.故選C.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和,考查了等差數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】
由函數(shù)的解析式,求得,,進(jìn)而得到,,結(jié)合兩角差的余弦公式和三角函數(shù)的基本關(guān)系式,即可求解.【詳解】由題意,函數(shù),令,即,即,所以,令,即,即,所以,又因?yàn)?,,即,,所以,,即,,平方可得,,兩式相加可得,所?故選:C.【點(diǎn)睛】本題主要考查了兩角和與差的余弦公式,三角函數(shù)的基本關(guān)系式的應(yīng)用,以及函數(shù)的解析式的應(yīng)用,其中解答中合理應(yīng)用三角函數(shù)的恒等變換的公式進(jìn)行運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.10、A【解析】
根據(jù)空間中直線與平面的位置關(guān)系,逐項(xiàng)進(jìn)行判定,即可求解.【詳解】由題意,直線與平面相交,對(duì)于A中,平面內(nèi)與無(wú)交點(diǎn)的直線都與直線異面,所以有無(wú)數(shù)條,正確;對(duì)于B中,平面內(nèi)的直線與要么相交,要么異面,不可能平行,所以,錯(cuò)誤;對(duì)于C中,平面內(nèi)有無(wú)數(shù)條平行直線與直線垂直,所以,錯(cuò)誤;對(duì)于D中,由A知,D錯(cuò)誤.故選A.【點(diǎn)睛】本題主要考查了直線與平面的位置關(guān)系的應(yīng)用,其中解答中熟記直線與平面的位置關(guān)系,合理判定是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點(diǎn):扇形面積公式.12、【解析】
根據(jù)無(wú)窮等比數(shù)列的各項(xiàng)和的計(jì)算方法,即可求解,得到答案.【詳解】由題意,數(shù)列的通項(xiàng)公式為,且,所以數(shù)列的各項(xiàng)和為.故答案為:.【點(diǎn)睛】本題主要考查了無(wú)窮等比數(shù)列的各項(xiàng)和的求解,其中解答中熟記無(wú)窮等比數(shù)列的各項(xiàng)和的計(jì)算方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】
根據(jù)周期公式即可求解.【詳解】函數(shù)的最小正周期故答案為:【點(diǎn)睛】本題主要考查了正弦型函數(shù)的周期,屬于基礎(chǔ)題.14、【解析】
根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點(diǎn)睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。15、825【解析】
以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,設(shè)直線l的斜率為k,用k表示出|PQ|,|AQ|,利用基本不等式得出答案.【詳解】過(guò)點(diǎn)M作△ABC的三邊的垂線,設(shè)⊙M的半徑為r,則r2,以AB,BC所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示,則M(2,2),A(0,8),因?yàn)锳在平面BCM的射影在直線BC上,所以直線l必存在斜率,過(guò)A作AQ⊥l,垂足為Q,交直線BC于P,設(shè)直線l的方程為:y=k(x﹣2)+2,則|AQ|,又直線AQ的方程為:yx+8,則P(8k,0),所以|AP|8,所以|PQ|=|AP|﹣|AQ|=8,所以,①當(dāng)k>﹣3時(shí),4(k+3)25≥825,當(dāng)且僅當(dāng)4(k+3),即k3時(shí)取等號(hào);②當(dāng)k<﹣3時(shí),則4(k+3)23≥823,當(dāng)且僅當(dāng)﹣4(k+3),即k3時(shí)取等號(hào).故答案為:825【點(diǎn)睛】本題考查了考查空間距離的計(jì)算,考查基本不等式的運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.16、【解析】
,即為首項(xiàng)為,公差為的等差數(shù)列,,,,由得,因?yàn)榛驎r(shí),有最大值,,即的最小值為,故答案為.【方法點(diǎn)晴】裂項(xiàng)相消法是最難把握的求和方法之一,其原因是有時(shí)很難找到裂項(xiàng)的方向,突破這一難點(diǎn)的方法是根據(jù)式子的結(jié)構(gòu)特點(diǎn),掌握一些常見的裂項(xiàng)技巧:①;②;③;④;此外,需注意裂項(xiàng)之后相消的過(guò)程中容易出現(xiàn)丟項(xiàng)或多項(xiàng)的問(wèn)題,導(dǎo)致計(jì)算結(jié)果錯(cuò)誤.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)兩圓對(duì)稱,直徑一樣,只需圓心對(duì)稱即可得圓C的標(biāo)準(zhǔn)方程;(2)設(shè)直線l的方程為y=﹣x+m與圓C聯(lián)立方程組,利用韋達(dá)定理,設(shè)而不求的思想即可求解b范圍,即截距的取值范圍.【詳解】(1)圓的圓心坐標(biāo)為,半徑為2設(shè)圓的圓心坐標(biāo)為,由題意可知解得:由對(duì)稱性質(zhì)可得,圓的半徑為2,所以圓的標(biāo)準(zhǔn)方程為:(2)設(shè)直線的方程為,聯(lián)立得:,設(shè)直線與圓的交點(diǎn),,由,得,(1)因?yàn)闉殁g角,所以,且直線不過(guò)點(diǎn)即滿足,且又,,所以(2)由(1)式(2)式可得,滿足,即,因?yàn)?,所以直線在軸上的截距的取值范圍是【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,是中檔題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理的合理運(yùn)用.18、(1)(2)【解析】
(1)根據(jù),由正弦定理化角為邊,得,再根據(jù)余弦定理即可求出角C;(2)由余弦定理可得,又,結(jié)合基本不等式可求得.由中點(diǎn)公式的向量式得,再利用數(shù)量積的運(yùn)算,即可求出的最大值.【詳解】(1)依題意得,,由正弦定理得,,即,由余弦定理得,,又因?yàn)?,所?(2)∵,,∴,即.∵為中點(diǎn),所以,∴當(dāng)且僅當(dāng)時(shí),等號(hào)成立.所以的最大值為.【點(diǎn)睛】本題主要考查利用正、余弦定理解三角形,以及利用中點(diǎn)公式的向量式結(jié)合基本不等式解決中線的最值問(wèn)題,意在考查學(xué)生的邏輯推理和數(shù)學(xué)運(yùn)算能力,屬于中檔題.19、(1)(2)【解析】
(1)由和可得sinA和cosA,再由二倍角公式即得cos2A;(2)由面積公式,可得的值,再由和正弦定理可知b和c的值,用余弦定理可計(jì)算出a,即得的周長(zhǎng).【詳解】解:(1)因?yàn)椋裕?因?yàn)?,所以,,則.(2)由題意可得,的面積為,即.因?yàn)?,所以,所以?由余弦定理可得.故的周長(zhǎng)為.【點(diǎn)睛】本題考查用正弦定理和余弦定理解三角形,以及二倍角公式,屬于??碱}型.20、(1);(2)增區(qū)間是,對(duì)稱軸為【解析】
(1)由周期求得ω,再由函數(shù)圖象上的最低點(diǎn)的縱坐標(biāo)為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復(fù)合函數(shù)的單調(diào)性求函數(shù)f(x)的單調(diào)遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對(duì)稱軸方程.【詳解】(1)因?yàn)榈淖钚≌芷跒橐驗(yàn)?,,,∴.又函?shù)圖象上的最低點(diǎn)縱坐標(biāo)為,且∴∴.(2)由,可得可得單調(diào)遞增區(qū)間.由,得.所以函數(shù)的對(duì)稱軸方程為
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 河北省邯鄲市臨漳縣2026屆九年級(jí)上學(xué)期1月期末考試道德與法治試卷(無(wú)答案)
- 中學(xué)食堂衛(wèi)生管理制度
- 養(yǎng)老院興趣小組制度
- 養(yǎng)老院服務(wù)質(zhì)量評(píng)估制度
- 企業(yè)人力資源規(guī)劃與發(fā)展制度
- 老年終末期尿失禁皮膚護(hù)理的循證多模式干預(yù)方案
- 家用電器安全用電知識(shí)普及手冊(cè)
- 工業(yè)危險(xiǎn)廢物處理工操作水平測(cè)試考核試卷含答案
- 我國(guó)上市公司現(xiàn)金持有量影響因素剖析:理論、實(shí)證與策略
- 我國(guó)上市公司并購(gòu)事件信息傳播與市場(chǎng)反應(yīng)的聯(lián)動(dòng)效應(yīng)研究:基于多案例與實(shí)證分析
- 裝修公司施工進(jìn)度管控流程詳解
- 村委會(huì) 工作總結(jié)
- 2025國(guó)家電網(wǎng)考試歷年真題庫(kù)附參考答案
- (正式版)DB33∕T 2059-2025 《城市公共交通服務(wù)評(píng)價(jià)指標(biāo)》
- 2024-2025學(xué)年江蘇省南京市玄武區(qū)八年級(jí)上學(xué)期期末語(yǔ)文試題及答案
- 連鎖餐飲門店運(yùn)營(yíng)管理標(biāo)準(zhǔn)流程
- GB/T 755-2025旋轉(zhuǎn)電機(jī)定額與性能
- 鋼結(jié)構(gòu)防護(hù)棚工程施工方案
- 2025低空經(jīng)濟(jì)發(fā)展及關(guān)鍵技術(shù)概況報(bào)告
- 中國(guó)藥物性肝損傷診治指南(2024年版)解讀
- 湖南省邵陽(yáng)市新邵縣2022-2023學(xué)年高一上學(xué)期期末質(zhì)量檢測(cè)物理試題
評(píng)論
0/150
提交評(píng)論