2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題含解析_第1頁
2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題含解析_第2頁
2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題含解析_第3頁
2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題含解析_第4頁
2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省楚雄州元謀縣一中高一數(shù)學第二學期期末達標檢測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設,是定義在上的兩個周期函數(shù),的周期為,的周期為,且是奇函數(shù).當時,,,其中.若在區(qū)間上,函數(shù)有個不同的零點,則的取值范圍是()A. B. C. D.2.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.3.我國古代名著《九章算術》中有這樣一段話:“今有金錘,長五尺,斬本一尺,重四斤,斬末一尺,重二斤.”意思是:“現(xiàn)有一根金錘,長5尺,頭部1尺,重4斤,尾部1尺,重2斤”,若該金錘從頭到尾,每一尺的重量構成等差數(shù)列,該金錘共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤4.正方體中,的中點為,的中點為,則異面直線與所成的角是()A. B. C. D.5.在中秋的促銷活動中,某商場對9月14日9時到14時的銷售額進行統(tǒng)計,其頻率分布直方圖如圖所示,已知12時到14時的銷售額為萬元,則10時到11時的銷售額為()A.萬元 B.萬元 C.萬元 D.萬元6.已知數(shù)列且是首項為2,公差為1的等差數(shù)列,若數(shù)列是遞增數(shù)列,且滿足,則實數(shù)a的取值范圍是()A. B.C. D.7.為了研究某大型超市開業(yè)天數(shù)與銷售額的情況,隨機抽取了5天,其開業(yè)天數(shù)與每天的銷售額的情況如表所示:開業(yè)天數(shù)1020304050銷售額/天(萬元)62758189根據(jù)上表提供的數(shù)據(jù),求得關于的線性回歸方程為,由于表中有一個數(shù)據(jù)模糊看不清,請你推斷出該數(shù)據(jù)的值為()A.68 B.68.3 C.71 D.71.38.在中,角A,B,C的對邊分別為a,b,c.已知,,,則B為()A. B.或 C. D.或9.下圖是某圓拱形橋一孔圓拱的示意圖,這個圓的圓拱跨度米,拱高米,建造時每隔8米需要用一根支柱支撐,則支柱的高度大約是()A.9.7米 B.9.1米 C.8.7米 D.8.1米10.將甲、乙兩個籃球隊5場比賽的得分數(shù)據(jù)整理成如圖所示的莖葉圖,由圖可知以下結論正確的是()A.甲隊平均得分高于乙隊的平均得分中乙B.甲隊得分的中位數(shù)大于乙隊得分的中位數(shù)C.甲隊得分的方差大于乙隊得分的方差D.甲乙兩隊得分的極差相等二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列,其中,若數(shù)列中,恒成立,則實數(shù)的取值范圍是_______.12.在數(shù)列中,,,則__________.13.已知a,b,x均為正數(shù),且a>b,則____(填“>”、“<”或“=”).14.求值:_____.15.若點到直線的距離是,則實數(shù)=______.16.設當時,函數(shù)取得最大值,則______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量.(I)當實數(shù)為何值時,向量與共線?(II)若向量,且三點共線,求實數(shù)的值.18.若在定義域內存在實數(shù),使得成立,則稱函數(shù)有“和一點”.(1)函數(shù)是否有“和一點”?請說明理由;(2)若函數(shù)有“和一點”,求實數(shù)的取值范圍;(3)求證:有“和一點”.19.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應的x的取值.20.如圖,在三棱柱中,平面平面,,,為棱的中點.(1)證明:;(2)求點到平面的距離.21.已知函數(shù).(1)求函數(shù)的單調遞增區(qū)間;(2)當時,求函數(shù)的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

根據(jù)題意可知,函數(shù)和在上的圖象有個不同的交點,作出兩函數(shù)圖象,即可數(shù)形結合求出.【詳解】作出兩函數(shù)的圖象,如圖所示:由圖可知,函數(shù)和在上的圖象有個不同的交點,故函數(shù)和在上的圖象有個不同的交點,才可以滿足題意.所以,圓心到直線的距離為,解得,因為兩點連線斜率為,所以,.故選:B.【點睛】本題主要考查了分段函數(shù)的圖象應用,函數(shù)性質的應用,函數(shù)的零點個數(shù)與兩函數(shù)圖象之間的交點個數(shù)關系的應用,意在考查學生的轉化能力和數(shù)形結合能力,屬于中檔題.2、A【解析】

根據(jù)等差中項的性質列方程,并轉化為的形式,由此求得的值,進而求得的值.【詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【點睛】本小題主要考查等差中項的性質,考查等比數(shù)列基本量的計算,屬于基礎題.3、D【解析】

直接利用等差數(shù)列的求和公式求解即可.【詳解】因為每一尺的重量構成等差數(shù)列,,,,數(shù)列的前5項和為.即金錘共重15斤,故選D.【點睛】本題主要考查等差數(shù)列求和公式的應用,意在考查運用所學知識解答實際問題的能力,屬于基礎題.4、D【解析】

首先根據(jù)得到異面直線與所成的角就是直線與所成角,再根據(jù)即可求出答案.【詳解】由圖知:取的中點,連接.因為,所以異面直線與所成的角就是直線與所成角.因為,所以,.因為,所以,.所以異面直線與所成的角為.故選:D【點睛】本題主要考查異面直線所成角,平移找角為解題的關鍵,屬于簡單題.5、C【解析】分析:先根據(jù)12時到14時的銷售額為萬元求出總的銷售額,再求10時到11時的銷售額.詳解:設總的銷售額為x,則.10時到11時的銷售額的頻率為1-0.1-0.4-0.25-0.1=0.15.所以10時到11時的銷售額為.故答案為C.點睛:(1)本題主要考查頻率分布直方圖求概率、頻數(shù)和總數(shù),意在考查學生對這些基礎知識的掌握水平.(2)在頻率分布直方圖中,所有小矩形的面積和為1,頻率=.6、D【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義可確定是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列通項公式,進而求得;由數(shù)列的單調性可知;分別在和兩種情況下討論可得的取值范圍.【詳解】由題意得:,,是以為首項,為公比的等比數(shù)列為遞增數(shù)列,即①當時,,,即只需即可滿足②當時,,,即只需即可滿足綜上所述:實數(shù)的取值范圍為故選:【點睛】本題考查根據(jù)數(shù)列的單調性求解參數(shù)范圍的問題,涉及到等差和等比數(shù)列定義的應用、等比數(shù)列通項公式的求解、對數(shù)運算法則的應用等知識;解題關鍵是能夠根據(jù)單調性得到關于變量和的關系式,進而通過分離變量的方式將問題轉化為變量與關于的式子的最值的大小關系問題.7、A【解析】

根據(jù)表中數(shù)據(jù)計算,再代入線性回歸方程求得,進而根據(jù)平均數(shù)的定義求出所求的數(shù)據(jù).【詳解】根據(jù)表中數(shù)據(jù),可得,代入線性回歸方程中,求得,則表中模糊不清的數(shù)據(jù)是,故選:B.【點睛】本題考查了線性回歸方程過樣本中心點的應用問題,是基礎題.8、C【解析】

根據(jù)正弦定理得到,再根據(jù)知,得到答案.【詳解】根據(jù)正弦定理:,即,根據(jù)知,故.故選:.【點睛】本題考查了根據(jù)正弦定理求角度,多解是容易發(fā)生的錯誤.9、A【解析】

以為原點、以為軸,以為軸建立平面直角坐標系,設出圓心坐標與半徑,可得圓拱所在圓的方程,將代入圓的方程,可求出支柱的高度【詳解】由圖以為原點、以為軸,以為軸建立平面直角坐標系,設圓心坐標為,,,則圓拱所在圓的方程為,,解得,,圓的方程為,將代入圓的方程,得.故選:A【點睛】本題考查了圓的標準方程在生活中的應用,需熟記圓的標準方程的形式,屬于基礎題.10、C【解析】

由莖葉圖分別計算甲、乙的平均數(shù),中位數(shù),方差及極差可得答案.【詳解】29;30,∴∴A錯誤;甲的中位數(shù)是29,乙的中位數(shù)是30,29<30,∴B錯誤;甲的極差為31﹣26=5,乙的極差為32﹣28=4,5∴D錯誤;排除可得C選項正確,故選C.【點睛】本題考查了由莖葉圖求數(shù)據(jù)的平均數(shù),極差,中位數(shù),運用了選擇題的做法即排除法的解題技巧,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由函數(shù)(數(shù)列)單調性確定的項,哪些項取,哪些項取,再由是最小項,得不等關系.【詳解】由題意數(shù)列是遞增數(shù)列,數(shù)列是遞減數(shù)列,存在,使得時,,當時,,∵數(shù)列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數(shù)列的單調性與最值.解題時楞借助函數(shù)的單調性求解.但數(shù)列是特殊的函數(shù),它的自變量只能取正整數(shù),因此討論時與連續(xù)函數(shù)有一些區(qū)別.12、16【解析】

依次代入即可求得結果.【詳解】令,則;令,則;令,則;令,則本題正確結果:【點睛】本題考查根據(jù)數(shù)列的遞推公式求解數(shù)列中的項,屬于基礎題.13、<【解析】

直接利用作差比較法解答.【詳解】由題得,因為a>0,x+a>0,b-a<0,x>0,所以所以.故答案為<【點睛】本題主要考查作差比較法,意在考查學生對這些知識的理解掌握水平和分析推理能力.14、【解析】

根據(jù)同角三角函數(shù)的基本關系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點睛】本題主要考查了同角三角函數(shù)的基本關系,同角角三角函數(shù)基本關系主要有:,.屬于基礎題。15、或1【解析】

由點到直線的距離公式進行解答,即可求出實數(shù)a的值.【詳解】點(1,a)到直線x﹣y+1=0的距離是,∴;即|a﹣2|=3,解得a=﹣1,或a=1,∴實數(shù)a的值為﹣1或1.故答案為:﹣1或1.【點睛】本題考查了點到直線的距離公式的應用問題,解題時應熟記點到直線的距離公式,是基礎題.16、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)利用向量的運算法則、共線定理即可得出;(2)利用向量共線定理、平面向量基本定理即可得出.【詳解】(1)kk(1,0)﹣(2,1)=(k﹣2,﹣1).2(1,0)+2(2,1)=(5,2).∵k與2共線∴2(k﹣2)﹣(﹣1)×5=0,即2k﹣4+5=0,得k.(2)∵A、B、C三點共線,∴.∴存在實數(shù)λ,使得,又與不共線,∴,解得.【點睛】本題考查了向量的運算法則、共線定理、平面向量基本定理,屬于基礎題.18、(1)不存在;(2)a>﹣2;(3)見解析【解析】

(1)解方程即可判斷;(2)由題轉化為2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,分離參數(shù)a=2x﹣2求值域即可求解;(3)由題意判斷方程cos(x+1)=cosx+cos1是否有解即可.【詳解】(1)若函數(shù)有“和一點”,則不合題意故不存在(2)若函數(shù)f(x)=2x+a+2x有“和一點”.則方程f(x+1)=f(x)+f(1)有解,即2(x+1)+a+2x+1=2x+a+2x+2+a+2有解,即a=2x﹣2有解,故a>﹣2;(3)證明:令f(x+1)=f(x)+f(1),即cos(x+1)=cosx+cos1,即cosxcos1﹣sinxsin1﹣cosx=cos1,即(cos1﹣1)cosx﹣sinxsin1=cos1,故存在θ,故cos(x+θ)=cos1,即cos(x+θ)=cos1,即cos(x+θ),∵cos21﹣(2﹣2cos1)=cos21+2cos1﹣2<cos22cos22<0,故01,故方程cos(x+1)=cosx+cos1有解,即f(x)=cosx函數(shù)有“和一點”.【點睛】本題考查了新定義及分類討論的思想應用,同時考查了三角函數(shù)的化簡與應用,轉化為有解問題是關鍵,是中檔題19、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解析】

(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時,求出內層函數(shù)的取值范圍,結合三角函數(shù)的圖象和性質,求出f(x)的最大值和最小值.【詳解】(Ⅰ)因為函數(shù)f(x)=4cosxsin(x)1.化簡可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期為.(Ⅱ)因為,所以.當,即時,f(x)取得最大值2;當,即時,f(x)取得最小值-1.【點睛】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質的運用,利用三角函數(shù)公式將函數(shù)進行化簡是解決本題的關鍵,屬于基礎題.20、(1)見解析;(2)【解析】

(1)作為棱的中點,連結,,通過證明平面可得.(2)根據(jù)等體積法:可求得.【詳解】(1)證明:連接,.∵,,∴是等邊三角形.作為棱的中點,連結,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分別為,的中點,∴,∴.又,∴平面.又平面,∴.(2)解:連接,∵,,∴為正三角形.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論