版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西師范大學附中高一下數學期末考試模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在正四棱柱中,,則點到平面的距離是()A. B. C. D.2.若將一個質點隨機投入如圖所示的長方形ABCD中,其中AB=2,BC=1,則質點落在以AB為直徑的半圓內的概率是()A. B. C. D.3.已知某幾何體的三視圖是如圖所示的三個直角三角形,則該幾何體的外接球的表面積為()A.17π B.34π C.51π D.68π4.一個長方體長、寬分別為5,4,且該長方體的外接球的表面積為,則該長方體的表面積為()A.47 B.60 C.94 D.1985.已知=4,=3,,則與的夾角為()A. B. C. D.6.下列說法正確的是()A.銳角是第一象限的角,所以第一象限的角都是銳角;B.如果向量,則;C.在中,記,,則向量與可以作為平面ABC內的一組基底;D.若,都是單位向量,則.7.已知是等差數列,,其前10項和,則其公差A. B. C. D.8.在中,內角所對的邊分別為,且,則()A. B. C. D.9.若a<b,則下列不等式中正確的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc210.已知點A(﹣1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是()A.(0,1) B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知數列,其中,若數列中,恒成立,則實數的取值范圍是_______.12.已知函數是定義在上的奇函數,當時,,則________.13.已知正三棱柱木塊,其中,,一只螞蟻自點出發(fā)經過線段上的一點到達點,當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為______.14.在中,,,,則的面積是__________.15.將邊長為1的正方形中,把沿對角線AC折起到,使平面⊥平面ABC,則三棱錐的體積為________.16.若,,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,求的值.18.已知夾角為,且,,求:(1);(2)與的夾角.19.設向量,,其中.(1)若,求的值;(2)若,求的值.20.已知函數,.(1)求函數的單調減區(qū)間;(2)若存在,使等式成立,求實數的取值范圍.21.正項數列的前項和為,且.(Ⅰ)試求數列的通項公式;(Ⅱ)設,求的前項和為.(Ⅲ)在(Ⅱ)的條件下,若對一切恒成立,求實數的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
計算的面積,根據可得點到平面的距離.【詳解】中,,,∴的邊上的高為,∴,設到平面的距離為,則,又,∴,解得.故選A.【點睛】本題涉及點面距離的求法,點面距可以通過建立空間直角坐標系來求得點面距離,或者尋找面面垂直,再直接過點做交線的垂線即可;當點面距離不好求時,也可以根據等積法把點到平面的距離歸結為一個容易求得的幾何體的體積.2、B【解析】試題分析:本題是幾何概型問題,矩形面積2,半圓面積,所以質點落在以AB為直徑的半圓內的概率是,故選B.考點:幾何概型.3、B【解析】
由三視圖還原出原幾何體,得幾何體的結構(特別是垂直關系),從而確定其外接球球心位置,得球半徑.【詳解】由三視圖知原幾何體是三棱錐,如圖,平面,平面.由這兩個線面垂直,得,因此的中點到四頂點的距離相等,即為外接球球心.由三視圖得,,∴.故選:B.【點睛】本題考查三棱錐外接球表面積,考查三視圖.解題關鍵是由三視圖還原出原幾何體,確定幾何體的結構,找到外接球球心.4、C【解析】
根據球的表面積公式求得半徑,利用等于體對角線長度的一半可構造方程求出長方體的高,進而根據長方體表面積公式可求得結果.【詳解】設長方體高為,外接球半徑為,則,解得:長方體外接球半徑為其體對角線長度的一半解得:長方體表面積本題正確選項:【點睛】本題考查與外接球有關的長方體的表面積的求解問題,關鍵是能夠明確長方體的外接球半徑為其體對角線長度的一半,從而構造方程求出所需的棱長.5、C【解析】
由已知中,,,我們可以求出的值,進而根據數量積的夾角公式,求出,,進而得到向量與的夾角;【詳解】,,,,,所以向量與的夾角為.故選C【點睛】本題主要考查平面向量的數量積運算和向量的夾角的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、C【解析】
可舉的角在第一象限,但不是銳角,可判斷A;考慮兩向量是否為零向量,可判斷B;由不共線,推得與不共線,可判斷C;考慮兩向量的方向可判斷D,得到答案.【詳解】對于A,銳角是第一象限的角,但第一象限的角不一定為銳角,比如的角在第一象限,但不是銳角,故A錯誤;對于B,如果兩個非零向量滿足,則,若存在零向量,結論不一定成立,故B錯誤;對于C,在中,記,可得與不共線,則向量與可以作為平面內的一組基底,故C正確;對于D,若都是單位向量,且方向相同時,;若方向不相同,結論不成立,所以D錯誤.故選C.【點睛】本題主要考查了命題的真假判斷,主要是向量共線和垂直的條件,著重考查了判斷能力和分析能力,屬于基礎題.7、D【解析】,解得,則,故選D.8、C【解析】
根據題目條件結合三角形的正弦定理以及三角形內角和定理可得sinA,進而利用二倍角余弦公式得到結果.【詳解】∵.∴sinAcosB=4sinCcosA﹣sinBcosA即sinAcosB+sinBcosA=4cosAsinC∴sinC=4cosAsinC∵1<C<π,sinC≠1.∴1=4cosA,即cosA,那么.故選C【點睛】本題考查了正弦定理及二倍角余弦公式的靈活運用,考查計算能力,屬于基礎題.9、C【解析】
利用特殊值對錯誤選項進行排除,然后證明正確的不等式.【詳解】取代入驗證可知,A、D選項錯誤;取代入驗證可知,B選項錯誤.對于C選項,由于,所以,即成立.故選:C【點睛】本小題主要考查不等式的性質,屬于基礎題.10、B【解析】
先求得直線y=ax+b(a>0)與x軸的交點為M(,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標,①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b;③若點M在點A的左側,求得b>1.再把以上得到的三個b的范圍取并集,可得結果.【詳解】由題意可得,三角形ABC的面積為1,由于直線y=ax+b(a>0)與x軸的交點為M(,0),由直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,可得b>0,故0,故點M在射線OA上.設直線y=ax+b和BC的交點為N,則由可得點N的坐標為(,).①若點M和點A重合,如圖:則點N為線段BC的中點,故N(,),把A、N兩點的坐標代入直線y=ax+b,求得a=b.②若點M在點O和點A之間,如圖:此時b,點N在點B和點C之間,由題意可得三角形NMB的面積等于,即,即,可得a0,求得b,故有b.③若點M在點A的左側,則b,由點M的橫坐標1,求得b>a.設直線y=ax+b和AC的交點為P,則由求得點P的坐標為(,),此時,由題意可得,三角形CPN的面積等于,即?(1﹣b)?|xN﹣xP|,即(1﹣b)?||,化簡可得2(1﹣b)2=|a2﹣1|.由于此時b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2.兩邊開方可得(1﹣b)1,∴1﹣b,化簡可得b>1,故有1b.綜上可得b的取值范圍應是,故選B.【點睛】本題主要考查確定直線的要素,點到直線的距離公式以及三角形的面積公式的應用,還考查了運算能力以及綜合分析能力,分類討論思想,屬于難題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由函數(數列)單調性確定的項,哪些項取,哪些項取,再由是最小項,得不等關系.【詳解】由題意數列是遞增數列,數列是遞減數列,存在,使得時,,當時,,∵數列中,是唯一的最小項,∴或,或,或,綜上.∴的取值范圍是.故答案為:.【點睛】本題考查數列的單調性與最值.解題時楞借助函數的單調性求解.但數列是特殊的函數,它的自變量只能取正整數,因此討論時與連續(xù)函數有一些區(qū)別.12、【解析】
根據奇偶性,先計算,再計算【詳解】因為是定義在上的奇函數,所以.因為當時,所以.故答案為【點睛】本題考查了奇函數的性質,屬于常考題型.13、【解析】
將正三棱柱的側面沿棱展開成平面,連接與的交點即為滿足最小時的點,可知點為棱的中點,即可計算出沿著螞蟻走過的路徑截開木塊時兩幾何體的體積之比.【詳解】將正三棱柱沿棱展開成平面,連接與的交點即為滿足最小時的點.由于,,再結合棱柱的性質,可得,一只螞蟻自點出發(fā)經過線段上的一點到達點,當沿螞蟻走過的最短路徑,為的中點,因為三棱柱是正三棱柱,所以當沿螞蟻走過的最短路徑,截開木塊時,兩部分幾何體的體積比為:.故答案為:.【點睛】本題考查棱柱側面最短路徑問題,涉及棱柱側面展開圖的應用以及幾何體體積的計算,考查分析問題解決問題能力,是中檔題.14、【解析】
計算,等腰三角形計算面積,作底邊上的高,計算得到答案.【詳解】,過C作于D,則故答案為【點睛】本題考查了三角形面積計算,屬于簡單題.15、【解析】
由面面垂直的性質定理可得面,再結合三棱錐的體積的求法求解即可.【詳解】解:取中點,連接,因為四邊形為邊長為1的正方形,則,即,又平面⊥平面ABC,由面面垂直的性質定理可得:面,且,則,故答案為:.【點睛】本題考查了三棱錐的體積的求法,重點考查了面面垂直的性質定理,屬中檔題.16、【解析】
將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關鍵就是將等式進行平方,結合等式結構進行變形計算,考查運算求解能力,屬于中等題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、【解析】
由即,解得:(因為舍去)或.18、(1)(2)【解析】試題分析:(1)先求模的平方將問題轉化為向量的數量積問題.(2)根據數量積公式即可求得兩向量的夾角.(1),,所以.(2)設與的夾角為.則,因為,所以.考點:1向量的數量積;2向量的模長.19、(1);(2)【解析】
(1)由向量垂直的坐標運算求出,再構造齊次式求解即可;(2)先由向量的模的運算求得,再由求解即可.【詳解】解:(1)若,則,得,所以;(2)因為,,則,因為,所以,即,化簡得,即,所以,因為,所以,則,所以,,所以,故.【點睛】本題考查了三角函數構造齊次式求值,重點考查了兩角差的正弦公式及二倍角公式,屬中檔題.20、(1),.(2)【解析】
(1)利用降次公式和輔助角公式化簡表達式,根據三角函數單調區(qū)間的求法,求得函數的單調減區(qū)間.(2)首先求得當時的值域.利用換元法令,將轉化為,根據的范圍,結合二次函數的性質,求得的取值范圍.【詳解】(1)由()解得().所以所求函數的單調減區(qū)間是,.(2)當時,,,即.令(),則關于的方程在上有解,即關于的方程在上有解.當時,.所以,則.因此所求實數的取值范圍是.【點睛】本小題主要考查三角恒等變換,考查三角函數單調區(qū)間的求法,考查根據方程的根存在求參數的取值范圍,考查二次函數的性質,考查化歸與轉化的數學思想方法,屬于中檔題.21、(Ⅰ);(Ⅱ);(Ⅲ).【解析】
(Ⅰ)將所給條件式子兩邊同時平方,利用遞推法可得的表達式,由兩式相減,變形即可證明數列為等差數列,進而結合首項與公差求得的通項公式.(Ⅱ)由(Ⅰ)中可求得.將與代入即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年高職航空導航技術(航空導航基礎)試題及答案
- 2025年中職(西式烹飪工藝)西餐基礎階段測試試題及答案
- 2025年高職城市軌道交通運營服務(車站調度實務)試題及答案
- 2025年高職植物保護(病蟲害防治)試題及答案
- 2025年大學第二學年(市場營銷)國際市場營銷學試題及答案
- 2025年高職(環(huán)境監(jiān)測技術)環(huán)境工程學試題及答案
- 2025年高職物聯(lián)網(物聯(lián)網安全防護)試題及答案
- 2025年大學物聯(lián)網工程(傳感器網絡)試題及答案
- 2026年網絡工程(網絡安全防護)試題及答案
- 2025年高職建筑工程施工(建筑施工技術)試題及答案
- 新內瘺穿刺護理
- 鉗工個人實習總結
- 大健康養(yǎng)肝護肝針專題課件
- 物流公司托板管理制度
- 道路高程測量成果記錄表-自動計算
- 關于醫(yī)院“十五五”發(fā)展規(guī)劃(2026-2030)
- DB31-T 1587-2025 城市軌道交通智能化運營技術規(guī)范
- 醫(yī)療護理操作評分細則
- 自考-經濟思想史知識點大全
- 冬季駕駛車輛安全培訓
- 醫(yī)學師承出師考核申請表
評論
0/150
提交評論