版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市南坪中學(xué)2024屆數(shù)學(xué)高一下期末調(diào)研模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.對數(shù)列,“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.非充分非必要條件2.我國古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=()A.2 B.3 C.4 D.53.若數(shù)列滿足,,則()A. B. C.18 D.204.已知正數(shù)、滿足,則的最小值為()A. B. C. D.5.若圓上有且僅有兩個點到直線的距離等于,則的取值范圍是()A. B. C. D.6.已知滿足:,則目標(biāo)函數(shù)的最大值為()A.6 B.8 C.16 D.47.若角的終邊與單位圓交于點,則()A. B. C. D.不存在8.已知直線的傾斜角為,且過點,則直線的方程為()A. B. C. D.9.集合,,則中元素的個數(shù)為()A.0 B.1 C.2 D.310.直線的傾斜角是()A.30° B.60° C.120° D.135°二、填空題:本大題共6小題,每小題5分,共30分。11.在平行六面體中,為與的交點,若存在實數(shù),使向量,則__________.12.在中,角為直角,線段上的點滿足,若對于給定的是唯一確定的,則_______.13.一個扇形的圓心角是2弧度,半徑是4,則此扇形的面積是______.14.若是方程的解,其中,則________.15.若向量與平行.則__.16.設(shè),則的值是____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,平面,,,,點Q在棱AB上.(1)證明:平面.(2)若三棱錐的體積為,求點B到平面PDQ的距離.18.設(shè).(1)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;(2)解關(guān)于的不等式(R).19.已知集合,集合.(1)求;(2)若不等式的解集為,求不等式的解集.20.已知集合,其中,由中的元素構(gòu)成兩個相應(yīng)的集合:,.其中是有序數(shù)對,集合和中的元素個數(shù)分別為和.若對于任意的,總有,則稱集合具有性質(zhì).(Ⅰ)檢驗集合與是否具有性質(zhì)并對其中具有性質(zhì)的集合,寫出相應(yīng)的集合和.(Ⅱ)對任何具有性質(zhì)的集合,證明.(Ⅲ)判斷和的大小關(guān)系,并證明你的結(jié)論.21.已知圓過兩點,,且圓心在直線上.(1)求圓的標(biāo)準(zhǔn)方程;(2)求過點且與圓相切的直線方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)遞增數(shù)列的性質(zhì)和充分必要條件判斷即可【詳解】對于任意成立可以推出其前n項和數(shù)列為遞增數(shù)列,但反過來不成立如當(dāng)時其,此時為遞增數(shù)列但所以“對于任意成立”是“其前n項和數(shù)列為遞增數(shù)列”的充分非必要條件故選:A【點睛】要說明一個命題不成立,只需舉出一個反例即可.2、C【解析】開始,輸入,則,判斷,否,循環(huán),,則,判斷,否,循環(huán),則,判斷,否,循環(huán),則,判斷,是,輸出,結(jié)束.故選擇C.3、A【解析】
首先根據(jù)題意得到:是以首項為,公差為的等差數(shù)列.再計算即可.【詳解】因為,所以是以首項為,公差為的等差數(shù)列.,.故選:A【點睛】本題主要考查等差數(shù)列的定義,熟練掌握等差數(shù)列的表達式是解題的關(guān)鍵,屬于簡單題.4、B【解析】
由得,再將代數(shù)式與相乘,利用基本不等式可求出的最小值.【詳解】,所以,,則,所以,,當(dāng)且僅當(dāng),即當(dāng)時,等號成立,因此,的最小值為,故選.【點睛】本題考查利用基本不等式求最值,對代數(shù)式進行合理配湊,是解決本題的關(guān)鍵,屬于中等題.5、B【解析】
先求出圓心到直線的距離,然后結(jié)合圖象,即可得到本題答案.【詳解】由題意可得,圓心到直線的距離為,故由圖可知,當(dāng)時,圓上有且僅有一個點到直線的距離等于;當(dāng)時,圓上有且僅有三個點到直線的距離等于;當(dāng)則的取值范圍為時,圓上有且僅有兩個點到直線的距離等于.故選:B【點睛】本題主要考查直線與圓的綜合問題,數(shù)學(xué)結(jié)合是解決本題的關(guān)鍵.6、D【解析】
作出不等式組對應(yīng)的平面區(qū)域,數(shù)形結(jié)合,利用z的幾何意義,即得。【詳解】由題得,不等式組對應(yīng)的平面區(qū)域如圖,中z表示函數(shù)在y軸的截距,由圖易得,當(dāng)函數(shù)經(jīng)過點A時z取到最大值,A點坐標(biāo)為,因此目標(biāo)函數(shù)的最大值為4.故選:D【點睛】本題考查線性規(guī)劃,是基礎(chǔ)題。7、B【解析】
由三角函數(shù)的定義可得:,得解.【詳解】解:在單位圓中,,故選B.【點睛】本題考查了三角函數(shù)的定義,屬基礎(chǔ)題.8、B【解析】
根據(jù)傾斜角的正切值為斜率,再根據(jù)點斜式寫出直線方程,化為一般式即可.【詳解】因為直線的傾斜角為,故直線斜率.又直線過點,故由點斜式方程可得整理為一般式可得:.故選:B.【點睛】本題考查直線方程的求解,涉及點斜式,屬基礎(chǔ)題.9、C【解析】,則,所以,元素個數(shù)為2個。故選C。10、C【解析】
根據(jù)直線方程求出斜率即可得到傾斜角.【詳解】由題:直線的斜率為,所以傾斜角為120°.故選:C【點睛】此題考查根據(jù)直線方程求傾斜角,需要熟練掌握直線傾斜角與斜率的關(guān)系,熟記常見特殊角的三角函數(shù)值.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
在平行六面體中把向量用用表示,再利用待定系數(shù)法,求得.再求解?!驹斀狻咳鐖D所示:因為,又因為,所以,所以.故答案為:【點睛】本題主要考查了空間向量的基本定理,還考查了運算求解的能力,屬于基礎(chǔ)題.12、【解析】
設(shè),根據(jù)已知先求出x的值,再求的值.【詳解】設(shè),則.依題意,若對于給定的是唯一的確定的,函數(shù)在(1,)是增函數(shù),在(,+)是減函數(shù),所以,此時,.故答案為【點睛】本題主要考查對勾函數(shù)的圖像和性質(zhì),考查差角的正切的計算和同角的三角函數(shù)的關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.13、16【解析】
利用公式直接計算即可.【詳解】扇形的面積.故答案為:.【點睛】本題考查扇形的面積,注意扇形的面積公式有兩個:,其中為扇形的半徑,為圓心角的弧度數(shù),為扇形的弧長,可根據(jù)題設(shè)條件合理選擇一個,本題屬于基礎(chǔ)題.14、或【解析】
將代入方程,化簡結(jié)合余弦函數(shù)的性質(zhì)即可求解.【詳解】由題意可得:,即所以或又所以或故答案為:或【點睛】本題主要考查了三角函數(shù)求值問題,屬于基礎(chǔ)題.15、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點睛】本題主要考查了兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運算,著重考查了推理與計算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)二倍角公式得出,再根據(jù)誘導(dǎo)公式即可得解.【詳解】解:由題意知:故,即.故答案為.【點睛】本題考查了二倍角公式和誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)線面垂直只需證明PD和平面內(nèi)兩條相交直線垂直即可,易得,另外中已知三邊長通過勾股定理易得,所以平面.(2)點B到平面PDQ的距離通過求得三棱錐的體積和面積即可,而,帶入數(shù)據(jù)求解即可.【詳解】(1)證明:在中,,,所以.所以是直角三角形,且,即.因為平面PAD,平面PAD,所以.因為,所以平面ABCD.(2)解:設(shè).因為.,所以的面積為.因為平面ABCD,所以三棱錐的體積為,解得.因為,所以,所以的面積為.則三棱錐的體積為.在中,,,,則.設(shè)點B到平面PDQ的距離為h,則,解得,即點B到平面PDQ的距離為.【點睛】此題考察立體幾何的證明,線面垂直只需證明線與平面內(nèi)的兩條相交直線分別垂直即可,第二問考察了三棱錐等體積法,通過變化頂點和底面進行轉(zhuǎn)化,屬于中檔題目.18、(1)(2)見解析【解析】
(1)由不等式對于一切實數(shù)恒成立等價于對于一切實數(shù)恒成立,利用二次函數(shù)的性質(zhì),即可求解,得到答案.(2)不等式化為,根據(jù)一元二次不等式的解法,分類討論,即可求解.【詳解】(1)由題意,不等式對于一切實數(shù)恒成立,等價于對于一切實數(shù)恒成立.當(dāng)時,不等式可化為,不滿足題意;當(dāng)時,滿足,即,解得.(2)不等式等價于.當(dāng)時,不等式可化為,所以不等式的解集為;當(dāng)時,不等式可化為,此時,所以不等式的解集為;當(dāng)時,不等式可化為,①當(dāng)時,,不等式的解集為;②當(dāng)時,,不等式的解集為;③當(dāng)時,,不等式的解集為.【點睛】本題主要考查了不等式的恒成立問題,以及含參數(shù)的一元二次不等式的解法,其中解答中熟記一元二次不等式的解法,以及一元二次方程的性質(zhì)是解答的關(guān)鍵,著重考查了分類討論思想,以及推理與運算能力,屬于中檔試題.19、(1)(2)【解析】
(1)由一元二次不等式的解法分別求出集合,再求交集即可;(2)由待定系數(shù)法求得,再代入不等式,解不等式即可得解.【詳解】解:(1)因為集合,集合,即;(2)由不等式的解集為,則不等式等價于,即,即,即不等式等價于,即,解得或,故不等式的解集為.【點睛】本題考查了集合的運算,重點考查了一元二次不等式的解法,屬基礎(chǔ)題.20、(Ⅰ)集合不具有性質(zhì),集合具有性質(zhì),相應(yīng)集合,,集合,(Ⅱ)見解析(Ⅲ)【解析】解:集合不具有性質(zhì).集合具有性質(zhì),其相應(yīng)的集合和是,.(II)證明:首先,由中元素構(gòu)成的有序數(shù)對共有個.因為,所以;又因為當(dāng)時,時,,所以當(dāng)時,.從而,集合中元素的個數(shù)最多為,即.(III)解:,證明如下:(1)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也至少有一個不成立.故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,(2)對于,根據(jù)定義,,,且,從而.如果與是的不同元素,那么與中至少有一個不成立,從而與中也不至少有一個不成立,故與也是的不同元素.可見,中元素的個數(shù)不多于中元素的個數(shù),即,由(1)(2)可知,.21、(1)(2)【解析】
(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高溫氣冷堆安全評估體系
- 上海小學(xué)語文期中復(fù)習(xí)資料
- 消費電子行業(yè)年度市場調(diào)研報告
- 河南商丘市高職單招職業(yè)適應(yīng)性測試試題題庫(答案+解析)
- 海南省??谑懈呗殕握袛?shù)學(xué)試題解析及答案
- 市場調(diào)研報告撰寫流程及范本
- 六年級數(shù)學(xué)應(yīng)用題競賽模擬試題
- 油庫管理人員年度工作總結(jié)范文
- 中學(xué)生德育在線作業(yè)設(shè)計與評價
- 室內(nèi)裝修施工材料采購管理辦法
- 高處作業(yè)安全培訓(xùn)課件
- 《保險公司主持技巧》課件
- 服裝加工公司火災(zāi)事故應(yīng)急預(yù)案范例(3篇)
- 農(nóng)忙及春節(jié)期間施工進度計劃保證措施
- 新增專業(yè)可行性論證報告
- 浙江省溫州市小升初英語真題2(含答案)
- 2025屆山東濰坊臨朐九年級化學(xué)第一學(xué)期期末綜合測試試題含解析
- FZT 82006-2018 機織配飾品行業(yè)標(biāo)準(zhǔn)
- 人教版小學(xué)1-4年級英文詞匯表
- 交警環(huán)衛(wèi)安全知識講座
- 中國通史課件
評論
0/150
提交評論