版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年福建華安縣第一中學數(shù)學高一下期末綜合測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等差數(shù)列的首項,公差,則()A.5 B.7 C.9 D.112.已知集合A=-1,A.-1,??0,??13.如圖,某船在A處看見燈塔P在南偏東方向,后來船沿南偏東的方向航行30km后,到達B處,看見燈塔P在船的西偏北方向,則這時船與燈塔的距離是:A.10kmB.20kmC.D.4.設函數(shù),若對任意的實數(shù)x都成立,則的最小值為()A. B. C. D.15.邊長為的正三角形中,點在邊上,,是的中點,則()A. B. C. D.6.某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)獎金投入,若該公司年全年投入研發(fā)獎金萬元,在此基礎上,每年投入的研發(fā)獎金比上一年增長,則該公司全年投入的研發(fā)獎金開始超過萬元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年7.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.88.設為等比數(shù)列,給出四個數(shù)列:①,②,③,④.其中一定為等比數(shù)列的是()A.①③ B.②④ C.②③ D.①②9.已知冪函數(shù)過點,令,,記數(shù)列的前項和為,則時,的值是()A.10 B.120 C.130 D.14010.等比數(shù)列的各項均為正數(shù),且,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)的圖象與直線恰有兩個不同交點,則m的取值范圍是________.12._______________。13.在中,角,,所對的邊分別為,,,若的面積為,且,,成等差數(shù)列,則最小值為______.14.函數(shù)的最小正周期是________15.已知等比數(shù)列中,若,,則_____.16.中,內(nèi)角,,所對的邊分別是,,,且,,則的值為__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案(1)的概率;18.在中,內(nèi)角的對邊分別為,已知.(1)證明:;(2)若,求邊上的高.19.已知,,函數(shù).(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)當時,求函數(shù)的值域.20.在銳角中,角的對邊分別是,且.(1)求角的大??;(2)若,求面積的最大值.21.某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內(nèi)的人數(shù);
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
直接利用等差數(shù)列的通項公式,即可得到本題答案.【詳解】由為等差數(shù)列,且首項,公差,得.故選:C【點睛】本題主要考查利用等差數(shù)列的通項公式求值,屬基礎題.2、B【解析】
直接利用交集運算得到答案.【詳解】因為A=-1,??故答案選B【點睛】本題考查了交集運算,屬于簡單題.3、C【解析】
在中,利用正弦定理求出得長,即為這時船與燈塔的距離,即可得到答案.【詳解】由題意,可得,即,在中,利用正弦定理得,即這時船與燈塔的距離是,故選C.【點睛】本題主要考查了正弦定理,等腰三角形的判定與性質,以及特殊角的三角函數(shù)值的應用,其中熟練掌握正弦定理是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.4、B【解析】
對任意的實數(shù)x都成立,說明三角函數(shù)f(x)在時取最大值,利用這個信息求ω的值.【詳解】由題意,當時,取到最大值,所以,解得,因為,所以當時,取到最小值.故選:B.【點睛】本題考查正弦函數(shù)的圖象及性質,三角函數(shù)的單調(diào)區(qū)間、對稱軸、對稱中心、最值等為??碱},本題屬于基礎題.5、D【解析】
,故選D.6、B【解析】試題分析:設從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點】增長率問題,常用對數(shù)的應用【名師點睛】本題考查等比數(shù)列的實際應用.在實際問題中平均增長率問題可以看作等比數(shù)列的應用,解題時要注意把哪個數(shù)作為數(shù)列的首項,然后根據(jù)等比數(shù)列的通項公式寫出通項,列出不等式或方程就可求解.7、D【解析】
由等比數(shù)列的性質求得,再由等差數(shù)列的性質可得結果.【詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【點睛】本題主要考查等比數(shù)列與等差數(shù)列的下標性質,屬于基礎題.解等差數(shù)列問題要注意應用等差數(shù)列的性質().8、D【解析】
設,再利用等比數(shù)列的定義和性質逐一分析判斷每一個選項得解.【詳解】設,①,,所以數(shù)列是等比數(shù)列;②,,所以數(shù)列是等比數(shù)列;③,不是一個常數(shù),所以數(shù)列不是等比數(shù)列;④,不是一個常數(shù),所以數(shù)列不是等比數(shù)列.故選D【點睛】本題主要考查等比數(shù)列的判定,意在考查學生對該知識的理解掌握水平和分析推理能力.9、B【解析】
根據(jù)冪函數(shù)所過點求得冪函數(shù)解析式,由此求得的表達式,利用裂項求和法求得的表達式,解方程求得的值.【詳解】設冪函數(shù)為,將代入得,所以.所以,所以,故,由解得,故選B.【點睛】本小題主要考查冪函數(shù)解析式的求法,考查裂項求和法,考查方程的思想,屬于基礎題.10、D【解析】
本題首先可根據(jù)數(shù)列是各項均為正數(shù)的等比數(shù)列以及計算出的值,然后根據(jù)對數(shù)的相關運算以及等比中項的相關性質即可得出結果.【詳解】因為等比數(shù)列的各項均為正數(shù),,所以,,所以,故選D.【點睛】本題考查對數(shù)的相關運算以及等比中項的相關性質,考查的公式為以及在等比數(shù)列中有,考查計算能力,是簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
化簡函數(shù)解析式為,做出函數(shù)的圖象,數(shù)形結合可得的取值范圍.【詳解】解:因為所以,,由,可得,則函數(shù),的圖象與直線恰有兩個不同交點,即方程在上有兩個不同的解,畫出的圖象如下所示:依題意可得時,函數(shù)的圖象與直線恰有兩個不同交點,故答案為:【點睛】本題主要考查正弦函數(shù)的最大值和單調(diào)性,函數(shù)的圖象變換規(guī)律,正弦函數(shù)的圖象特征,體現(xiàn)了轉化、數(shù)形結合的數(shù)學思想,屬于中檔題.12、【解析】
本題首先可根據(jù)同角三角函數(shù)關系式化簡得出,然后根據(jù)兩角差的正弦公式化簡得出,最后根據(jù)二倍角公式以及三角函數(shù)誘導公式即可得出結果?!驹斀狻?,故答案為【點睛】本題考查根據(jù)三角函數(shù)相關公式進行化簡求值,考查到的公式有、、以及,考查化歸與轉化思想,是中檔題。13、4【解析】
先根據(jù),,成等差數(shù)列得到,再根據(jù)余弦定理得到滿足的等式關系,而由面積可得,利用基本不等式可求的最小值.【詳解】因為,,成等差數(shù)列,,故.由余弦定理可得.由基本不等式可以得到,當且僅當時等號成立.因為,所以,所以即,當且僅當時等號成立.故填4.【點睛】三角形中與邊有關的最值問題,可根據(jù)題設條件找到各邊的等式關系或角的等量關系,再根據(jù)邊的關系式的結構特征選用合適的基本不等式求最值,也可以利用正弦定理把與邊有關的目標代數(shù)式轉化為與角有關的三角函數(shù)式后再求其最值.14、【解析】
先利用二倍角余弦公式對函數(shù)解析式進行化簡整理,進而利用三角函數(shù)最小正周期的公式求得函數(shù)的最小正周期.【詳解】解:f(x)=1﹣2sin2x=cos2x∴函數(shù)最小正周期Tπ故答案為π.【點睛】本題主要考查了二倍角的化簡和三角函數(shù)的周期性及其求法.考查了三角函數(shù)的基礎的知識的應用.15、4【解析】
根據(jù)等比數(shù)列的等積求解即可.【詳解】因為,故.又,故.故答案為:4【點睛】本題主要考查了等比數(shù)列等積性的運用,屬于基礎題.16、4【解析】
利用余弦定理變形可得,從而求得結果.【詳解】由余弦定理得:本題正確結果:【點睛】本題考查余弦定理的應用,關鍵是能夠熟練應用的變形,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)0.4(2)【解析】
(1)從頻率分布直方圖中計算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計算出結果?!驹斀狻浚?)設事件為“隨機選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于單”依題意,連鎖店的人均日快遞業(yè)務量不少于單的頻率分別為:因為所以估計為;(2)設事件為“從四名騎手中隨機選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以。【點睛】本題考查頻率分布直方圖以及古典概型概率的計算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(2)所有矩形的面積之和為。18、(1)見解析(2)【解析】分析:(1)由,結合正弦定理可得,即;(2)由,結合余弦定理可得,從而可求得邊上的高.詳解:(1)證明:因為,所以,所以,故.(2)解:因為,所以.又,所以,解得,所以,所以邊上的高為.點睛:解三角形問題,多為邊和角的求值問題,這就需要根據(jù)正、余弦定理結合已知條件靈活轉化邊和角之間的關系,從而達到解決問題的目的.其基本步驟是:第一步:定條件,即確定三角形中的已知和所求,在圖形中標出來,然后確定轉化的方向.第二步:定工具,即根據(jù)條件和所求合理選擇轉化的工具,實施邊角之間的互化.第三步:求結果.19、(1);.(2).【解析】
(1)根據(jù)平面向量數(shù)量積的坐標運算、三角恒等變換先求出函數(shù)的解析式即可由三角函數(shù)的性質求出函數(shù)的最小正周期和單調(diào)遞減區(qū)間;(2)對于形如的值域問題,要先求出的范圍,再根據(jù)正弦函數(shù)的性質逐步求解即可.【詳解】(1)由已知可得,,,令,解之得,所以函數(shù)的單調(diào)遞減區(qū)間為(2)因為,當時,,此時,,所以函數(shù)的值域為.【點睛】本題主要考查平面向量數(shù)量積的坐標運算、三角恒等變換及三角函數(shù)的周期、單調(diào)區(qū)間、值域的求法,試題綜合性強,屬中等難度題.20、(1);(2)【解析】
(1)利用正弦定理邊轉化為角,逐步化簡,即可得到本題答案;(2)由余弦定理得,,綜合,得,從而可得到本題答案.【詳解】(1)因為,所以,即,所以,又,所以,由為銳角三角形,則;(2)因為,所以,所以,即(當且僅當時取等號),所以.【點睛】本題主要考查利用正弦定理邊角轉化求角,以及余弦定理和基本不等式綜合運用求三角形面積的最大值.21、(Ⅰ)0.4;(Ⅱ)20.【解析】
(1)首先可以根據(jù)頻率分布直方圖得出樣本中分數(shù)不小于的頻率,然后算出樣本中分數(shù)小于的頻率,最后計算出分數(shù)小于的概率;(2)首先計算出樣本中分數(shù)不小于的頻率,然后計算出分數(shù)在區(qū)間內(nèi)的人數(shù),最后計算出總體中分數(shù)在區(qū)間內(nèi)的人數(shù)?!驹斀狻浚?)根據(jù)頻率分布直方圖可知,樣本中分數(shù)不小于的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2026年廣西藍天航空職業(yè)學院單招職業(yè)傾向性測試題庫及答案詳解1套
- 2026年襄陽科技職業(yè)學院單招職業(yè)傾向性考試題庫及參考答案詳解
- 2026年九州職業(yè)技術學院單招職業(yè)傾向性考試題庫及參考答案詳解1套
- 2026年四川三河職業(yè)學院單招職業(yè)技能測試題庫參考答案詳解
- 2026年海南軟件職業(yè)技術學院單招職業(yè)適應性測試題庫及參考答案詳解
- 2026年湖南理工職業(yè)技術學院單招職業(yè)適應性測試題庫及答案詳解1套
- 銀行綜合崗面試題及答案
- 消防隊職業(yè)規(guī)劃面試題及答案
- 新冠護理面試題目及答案
- 2025年寧波和豐產(chǎn)業(yè)園(集團)有限公司招聘備考題庫及完整答案詳解一套
- 2026廣東揭陽市檢察機關招聘勞動合同制書記員19人參考筆試試題及答案解析
- 2025年最高人民檢察院招聘書記員考試試題及答案
- 藥理學(藥)期末復習資料 (一)
- 2025年中小學校長選拔筆試試題及參考答案
- 2025年燃氣培訓考試試題及答案
- 公司法人變更協(xié)議書
- 7《包身工》課件2025-2026學年統(tǒng)編版高中語文選擇性必修中冊
- 2025廣東珠海市金灣區(qū)紅旗鎮(zhèn)招聘編外人員23人筆試考試參考試題及答案解析
- (新教材)部編人教版三年級上冊語文 習作:那次經(jīng)歷真難忘 教學課件
- 鏈篦機回轉窯培訓課件
- 甘草成分的藥理作用研究進展-洞察及研究
評論
0/150
提交評論