廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題含解析_第1頁
廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題含解析_第2頁
廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題含解析_第3頁
廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題含解析_第4頁
廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

廣東省廣州市越秀區(qū)荔灣區(qū)聯(lián)考2024年高一下數(shù)學(xué)期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在區(qū)間上隨機(jī)地取一個數(shù).則的值介于0到之間的概率為().A. B. C. D.2.設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是A.y與x具有正的線性相關(guān)關(guān)系B.回歸直線過樣本點的中心(,)C.若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kgD.若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg3.若變量,且滿足約束條件,則的最大值為()A.15 B.12 C.3 D.4.在直三棱柱中,底面為直角三角形,,,是上一動點,則的最小值是()A. B. C. D.5.從裝有4個紅球和3個白球的袋中任取2個球,那么下列事件中,是對立事件的是()A.至少有1個白球;都是紅球 B.至少有1個白球;至少有1個紅球C.恰好有1個白球;恰好有2個白球 D.至少有1個白球;都是白球6.設(shè)長方體的長、寬、高分別為2,1,1,其頂點都在同一個球面上,則該球的表面積為()A. B. C. D.7.某四棱錐的三視圖如圖所示,則它的最長側(cè)棱的長為()A. B. C. D.48.已知函數(shù)的圖像如圖所示,則和分別是()A. B. C. D.9.圓與圓的位置關(guān)系是()A.相離 B.相交 C.相切 D.內(nèi)含10.等差數(shù)列中,,且,且,是其前項和,則下列判斷正確的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,且,則的值為______12.若,,則的值為______.13.已知函數(shù),的最大值為_____.14.已知扇形的面積為,圓心角為,則該扇形半徑為__________.15.若數(shù)列滿足,,則數(shù)列的通項公式______.16.設(shè)a>0,b>0,若是與3b的等比中項,則的最小值是__.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,四邊形是邊長為2的正方形,為的中點,以為折痕把折起,使點到達(dá)點的位置,且.(1)求證:平面平面;(2)求二面角的余弦值.18.如圖,在三棱柱中(底面為正三角形),平面,,,,是邊的中點.(1)證明:平面平面.(2)求點到平面的距離.19.已知直線截圓所得的弦長為.直線的方程為.(1)求圓的方程;(2)若直線過定點,點在圓上,且,為線段的中點,求點的軌跡方程.20.已知數(shù)列前項和(),數(shù)列等差,且滿足,前9項和為153.(1)求數(shù)列、的通項公式;(2)設(shè),數(shù)列的前項和為,求及使不等式對一切都成立的最小正整數(shù)的值;(3)設(shè),問是否存在,使得成立?若存在,求出m的值;若不存在,請說明理由.21.在中,內(nèi)角、、所對的邊分別為、、,且.(1)求;(2)若,,求.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D2、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關(guān)關(guān)系,A正確;回歸直線過樣本點的中心(),B正確;該大學(xué)某女生身高增加1cm,預(yù)測其體重約增加0.85kg,C正確;該大學(xué)某女生身高為170cm,預(yù)測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.3、A【解析】

作出可行域,采用平移直線法判斷何處取到最大值.【詳解】畫出可行域如圖陰影部分,由得,目標(biāo)函數(shù)圖象可看作一條動直線,由圖形可得當(dāng)動直線過點時,.故選A.【點睛】本題考查線性規(guī)劃中線性目標(biāo)函數(shù)最值的計算,難度較易.求解線性目標(biāo)函數(shù)的最值時,采用平移直線法是最常規(guī)的.4、B【解析】

連,沿將展開與在同一個平面內(nèi),不難看出的最小值是的連線,由余弦定理即可求解.【詳解】解:連,沿將展開與在同一個平面內(nèi),如圖所示,

連,則的長度就是所求的最小值.

,可得

又,

,

在中,由余弦定理可求得,故選B.【點睛】本題考查棱柱的結(jié)構(gòu)特征,余弦定理的應(yīng)用,是中檔題.5、A【解析】

根據(jù)對立事件的定義判斷.【詳解】從裝有4個紅球和3個白球的袋內(nèi)任取2個球,在A中,“至少有1個白球”與“都是紅球”不能同時發(fā)生且必有一個事件會發(fā)生,是對立事件.在B中,“至少有1個白球”與“至少有1個紅球”可以同時發(fā)生,不是互斥事件.在C中,“恰好有1個白球”與“恰好有2個白球”是互斥事件,但不是對立事件.在D中,“至少有1個白球”與“都是白球”不是互斥事件.故選:A.6、B【解析】

先求出長方體的對角線的長度,即得外接球的直徑,再求球的表面積得解.【詳解】由題得長方體外接球的直徑.故選:B【點睛】本題主要考查長方體的外接球的表面積的計算,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.7、C【解析】

由三視圖可知:底面,,底面是一個直角梯形,,,均為直角三角形,判斷最長的棱,通過幾何體求解即可.【詳解】由三視圖可知:該幾何體如圖所示,則底面,,底面是一個直角梯形,其中,,,,可得,,均為直角三角形,最長的棱是,.故選:C.【點睛】本題考查了三視圖,線面垂直的判定與性質(zhì)定理,考查了推理能力與計算能力,屬于基礎(chǔ)題.8、C【解析】

通過識別圖像,先求,再求周期,將代入求即可【詳解】由圖可知:,,將代入得,又,,故故選C【點睛】本題考查通過三角函數(shù)識圖求解解析式,屬于基礎(chǔ)題9、B【解析】

計算圓心距,判斷與半徑和差的關(guān)系得到位置關(guān)系.【詳解】圓心距相交故答案選B【點睛】本題考查了兩圓的位置關(guān)系,判斷圓心距與半徑和差的關(guān)系是解題的關(guān)鍵.10、C【解析】

由,且可得,,,,結(jié)合等差數(shù)列的求和公式即等差數(shù)列的性質(zhì)即可判斷.【詳解】,且,,數(shù)列的前項都是負(fù)數(shù),,,,由等差數(shù)列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故選:C.【點睛】本題考查等差數(shù)列前項和符號的判斷,解題時要充分結(jié)合等差數(shù)列下標(biāo)和的性質(zhì)以及等差數(shù)列求和公式進(jìn)行計算,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、-7【解析】

,利用列方程求解即可.【詳解】,且,,解得:.【點睛】考查向量加法、數(shù)量積的坐標(biāo)運算.12、【解析】

求出,將展開即可得解.【詳解】因為,,所以,所以.【點睛】本題主要考查了三角恒等式及兩角和的正弦公式,考查計算能力,屬于基礎(chǔ)題.13、【解析】

化簡,再利用基本不等式以及輔助角公式求出的最大值,即可得到的最大值【詳解】由題可得:由于,,所以,由基本不等式可得:由于,所以所以,即的最大值為故答案為【點睛】本題考查三角函數(shù)的最值問題,涉及二倍角公式、基本不等式、輔助角公式等知識點,屬于中檔題。14、2【解析】

將圓心角化為弧度制,再利用扇形面積得到答案.【詳解】圓心角為扇形的面積為故答案為2【點睛】本題考查了扇形的面積公式,屬于簡單題.15、【解析】

在等式兩邊取倒數(shù),可得出,然后利用等差數(shù)列的通項公式求出的通項公式,即可求出.【詳解】,等式兩邊同時取倒數(shù)得,.所以,數(shù)列是以為首項,以為公差的等差數(shù)列,.因此,.故答案為:.【點睛】本題考查利用倒數(shù)法求數(shù)列通項,同時也考查了等差數(shù)列的定義,考查計算能力,屬于中等題.16、【解析】由已知,是與的等比中項,則則,當(dāng)且僅當(dāng)時等號成立故答案為2【點睛】本題考查基本不等式的性質(zhì)、等比數(shù)列的性質(zhì),其中熟練應(yīng)用“乘1法”是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)先由線面垂直的判定定理得到平面,進(jìn)而可得平面平面;(2)先取中點,連結(jié),,證明平面平面,在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標(biāo)系.分別求出兩平面的法向量,求向量夾角余弦值,即可求出結(jié)果.【詳解】(1)因為四邊形是正方形,所以折起后,且,因為,所以是正三角形,所以.又因為正方形中,為的中點,所以,所以,所以,所以,又因為,所以平面.又平面,所以平面平面.(2)取中點,連結(jié),,則,,又,則平面.又平面,所以平面平面.在平面內(nèi)作于點,則平面.以點為原點,為軸,為軸,如圖建立空間直角坐標(biāo)系.在中,,,.∴,,故,,,∴,.設(shè)平面的一個法向量為,則由,得,令,得,,∴.因為平面的法向量為,則,又二面角為銳二面角,∴二面角的余弦值為.【點睛】本題主要考查面面垂直的判定,以及二面角的余弦值,熟記面面垂直的判定定理、以及二面角的向量求法即可,屬于??碱}型.18、(1)見解析(2)【解析】

(1)由,為的中點,可得,又平面,可得,即可證明平面,結(jié)合平面,即可證明平面平面;(2)設(shè)點到平面的距離為,由等體積法,,即,求解即可.【詳解】(1)證明:,為的中點,.又平面,平面,.又,平面.又平面,平面平面.(2)解:由(1)知,平面,平面,.,,,.設(shè)點到平面的距離為,由,得,即,,即點到平面的距離為.【點睛】本題考查了面面垂直的證明,考查了利用等體積法求點到面的距離,考查了學(xué)生的空間想象能力,屬于中檔題.19、(1);(2).【解析】

(1)利用點到直線的距離公式得到圓心到直線的距離,利用直線截圓得到的弦長公式可得半徑r,從而得到圓的方程;(2)由已知可得直線l1恒過定點P(1,1),設(shè)MN的中點Q(x,y),由已知可得,利用兩點間的距離公式化簡可得答案.【詳解】(1)根據(jù)題意,圓的圓心為(0,0),半徑為r,則圓心到直線l的距離,若直線截圓所得的弦長為,則有,解可得,則圓的方程為;(2)直線l1的方程為,即,則有,解得,即P的坐標(biāo)為(1,1),點在圓上,且,為線段的中點,則,設(shè)MN的中點為Q(x,y),則,即,化簡可得:即為點Q的軌跡方程.【點睛】本題考查直線與圓的位置關(guān)系,考查直線被圓截得的弦長公式的應(yīng)用,考查直線恒過定點問題和軌跡問題,屬于中檔題.20、(1),;(2),;(3)11.【解析】

(1)由數(shù)列的前項和結(jié)合求得數(shù)列的通項公式,再由,可得為等差數(shù)列,由已知求出公差,代入等差數(shù)列的通項公式得答案;(2)把數(shù)列,的通項公式代入,然后利用裂項相消法求和,可得使不等式對一切都成立的最小正整數(shù)的值;(3)分為偶數(shù)和奇數(shù)分類分析得答案.【詳解】解:(1)由.故當(dāng)時,.時,,而當(dāng)時,,,又,即,為等差數(shù)列,于是.而,故,,因此,,即;(2)..易知單調(diào)遞增,由,得,而,故,;(3),①當(dāng)為奇數(shù)時,為偶數(shù).此時,,,.②

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論