天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第1頁
天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第2頁
天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第3頁
天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第4頁
天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

天津一中2024年高一下數(shù)學(xué)期末經(jīng)典模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在空間中,有三條不重合的直線,,,兩個不重合的平面,,下列判斷正確的是A.若∥,∥,則∥ B.若,,則∥C.若,∥,則 D.若,,∥,則∥2.某人打靶時連續(xù)射擊兩次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.兩次都中靶D.兩次都不中靶3.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,b=c,且滿足=,若點O是△ABC外一點,∠AOB=θ(0<θ<π),OA=2OB=2,則平面四邊形OACB面積的最大值是()A. B. C.3 D.4.宋元時期數(shù)學(xué)名著《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入的a,b分別為5,2,則輸出的()A.5 B.4 C.3 D.95.各項不為零的等差數(shù)列中,,數(shù)列是等比數(shù)列,且,則()A.4 B.8 C.16 D.646.某市舉行“中學(xué)生詩詞大賽”,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.則獲得復(fù)賽資格的人數(shù)為()A.640 B.520 C.280 D.2407.已知在R上是奇函數(shù),且滿足,當(dāng)時,,則()A.-2 B.2 C.-98 D.988.南北朝數(shù)學(xué)家祖暅在推導(dǎo)球的體積公式時構(gòu)造了一個中間空心的幾何體,經(jīng)后繼學(xué)者改進(jìn)后這個中間空心的幾何體其三視圖如圖所示,下列那個值最接近該幾何體的體積()A.8 B.12 C.16 D.249.已知,則()A.-3 B. C. D.310.已知函數(shù)在上單調(diào)遞增,且的圖象關(guān)于對稱.若,則的解集為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知扇形的圓心角為,半徑為5,則扇形的弧長_________.12.已知等差數(shù)列,,,,則______.13.如果數(shù)據(jù)的平均數(shù)是,則的平均數(shù)是________.14.若等差數(shù)列的前項和,且,則______________.15.若直線與直線平行,則實數(shù)a的值是________.16.若角的終邊經(jīng)過點,則的值為________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.平面內(nèi)給定三個向量=(3,2),=(-1,2),=(4,1).(1)求滿足的實數(shù)m,n;(2)若,求實數(shù)k;18.對于定義域相同的函數(shù)和,若存在實數(shù),使,則稱函數(shù)是由“基函數(shù),”生成的.(1)若函數(shù)是“基函數(shù),”生成的,求實數(shù)的值;(2)試?yán)谩盎瘮?shù),”生成一個函數(shù),且同時滿足:①是偶函數(shù);②在區(qū)間上的最小值為.求函數(shù)的解析式.19.已知的三個內(nèi)角、、的對邊分別是、、,的面積,(Ⅰ)求角;(Ⅱ)若中,邊上的高,求的值.20.已知向量,,且.(1)求的值;(2)求的值.21.若,且,求的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

根據(jù)空間中點、線、面的位置關(guān)系的判定與性質(zhì),逐項判定,即可求解,得到答案.【詳解】由題意,A中,若∥,∥,則與可能平行、相交或異面,故A錯誤;B中,若,,則與c可能平行,也可能垂直,比如墻角,故B錯誤;C中,若,∥,則,正確;D中,若,,∥,則與可能平行或異面,故D錯誤;故選C.【點睛】本題主要考查了線面位置關(guān)系的判定與證明,其中解答中熟記空間中點、線、面的位置關(guān)系,以及線面位置關(guān)系的判定定理和性質(zhì)定理是解答的關(guān)鍵,著重考查了推理與論證能力,屬于中檔試題.2、D【解析】

根據(jù)互斥事件的定義逐個分析即可.【詳解】“至少有一次中靶”與“至多有一次中靶”均包含中靶一次的情況.故A錯誤.“至少有一次中靶”與“只有一次中靶”均包含中靶一次的情況.故B錯誤.“至少有一次中靶”與“兩次都中靶”均包含中靶兩次的情況.故C錯誤.根據(jù)互斥事件的定義可得,事件“至少有一次中靶”的互斥事件是“兩次都不中靶”.故選:D【點睛】本題主要考查了互斥事件的辨析,屬于基礎(chǔ)題型.3、A【解析】

根據(jù)正弦和角公式化簡得是正三角形,再將平面四邊形OACB面積表示成的三角函數(shù),利用三角函數(shù)求得最值.【詳解】由已知得:即所以即又因為所以所以又因為所以是等邊三角形.所以在中,由余弦定理得且因為平面四邊形OACB面積為當(dāng)時,有最大值,此時平面四邊形OACB面積有最大值,故選A.【點睛】本題關(guān)鍵在于把所求面積表示成角的三角函數(shù),屬于難度題.4、B【解析】

由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出,分析循環(huán)中各變量的變化情況,可得答案.【詳解】當(dāng)時,,,滿足進(jìn)行循環(huán)的條件;當(dāng)時,,,滿足進(jìn)行循環(huán)的條件;當(dāng)時,,,滿足進(jìn)行循環(huán)的條件;當(dāng)時,,,不滿足進(jìn)行循環(huán)的條件;故選:B【點睛】本題主要考查程序框圖,解題的關(guān)鍵是讀懂流程圖各個變量的變化情況,屬于基礎(chǔ)題.5、D【解析】

根據(jù)等差數(shù)列性質(zhì)可求得,再利用等比數(shù)列性質(zhì)求得結(jié)果.【詳解】由等差數(shù)列性質(zhì)可得:又各項不為零,即由等比數(shù)列性質(zhì)可得:本題正確選項:【點睛】本題考查等差數(shù)列、等比數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】

由頻率分布直方圖得到初賽成績大于90分的頻率,由此能求出獲得復(fù)賽資格的人數(shù).【詳解】初賽成績大于90分的具有復(fù)賽資格,某校有800名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間(30,150]內(nèi),由頻率分布直方圖得到初賽成績大于90分的頻率為:1﹣(0.0025+0.0075+0.0075)×20=0.1.∴獲得復(fù)賽資格的人數(shù)為:0.1×800=2.故選:B.【點睛】本題考查頻率分布直方圖的應(yīng)用,考查頻數(shù)的求法,考查頻率分布直方圖等基礎(chǔ)知識,是基礎(chǔ)題.7、A【解析】

由在R上是奇函數(shù)且周期為4可得,即可算出答案【詳解】因為在R上是奇函數(shù),且滿足所以因為當(dāng)時,所以故選:A【點睛】本題考查的是函數(shù)的奇偶性和周期性,較簡單.8、C【解析】

由三視圖確定此幾何體的結(jié)構(gòu),圓柱的體積減去同底同高的圓錐的體積即為所求.【詳解】該幾何體是一個圓柱挖掉一個同底同高的圓錐,圓柱底為2,高為2,所求體積為,所以C選項最接近該幾何體的體積.故選:C【點睛】本題考查由三視圖確定幾何體的結(jié)構(gòu)及求其體積,屬于基礎(chǔ)題.9、C【解析】

由同角三角函數(shù)關(guān)系得到余弦、正切,再由兩角差的正切公式得到結(jié)果.【詳解】已知,則,,則故答案為C.【點睛】這個題目考查了三角函數(shù)的化簡求值,1.利用sin2α+cos2α=1可以實現(xiàn)角α的正弦、余弦的互化,利用=tanα可以實現(xiàn)角α的弦切互化;2.注意公式逆用及變形應(yīng)用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.10、D【解析】

首先根據(jù)題意得到的圖象關(guān)于軸對稱,,再根據(jù)函數(shù)的單調(diào)性畫出草圖,解不等式即可.【詳解】因為的圖象關(guān)于對稱,所以的圖象關(guān)于軸對稱,.又因為在上單調(diào)遞增,所以函數(shù)的草圖如下:所以或,解得:或.故選:D【點睛】本題主要考查函數(shù)的對稱性,同時考查了函數(shù)的圖象平移變換,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)扇形的弧長公式進(jìn)行求解即可.【詳解】∵扇形的圓心角α,半徑為r=5,∴扇形的弧長l=rα5.故答案為:.【點睛】本題主要考查扇形的弧長公式的計算,熟記弧長公式是解決本題的關(guān)鍵,屬于基礎(chǔ)題.12、【解析】

利用等差中項的基本性質(zhì)求得,,并利用等差中項的性質(zhì)求出的值,由此可得出的值.【詳解】由等差中項的性質(zhì)可得,同理,由于、、成等差數(shù)列,所以,則,因此,.故答案為:.【點睛】本題考查利用等差中項的性質(zhì)求值,考查計算能力,屬于基礎(chǔ)題.13、5【解析】

根據(jù)平均數(shù)的定義計算.【詳解】由題意,故答案為:5.【點睛】本題考查求新數(shù)據(jù)的均值.掌握均值定義是解題關(guān)鍵.實際上如果數(shù)據(jù)的平均數(shù)是,則新數(shù)據(jù)的平均數(shù)是.14、【解析】

設(shè)等差數(shù)列的公差為,根據(jù)題意建立和的方程組,解出這兩個量,即可求出的值.【詳解】設(shè)等差數(shù)列的公差為,由題意得,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列中項的計算,解題的關(guān)鍵就是要建立首項和公差的方程組,利用這兩個基本量來求解,考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、0【解析】

解方程即得解.【詳解】因為直線與直線平行,所以,所以或.當(dāng)時,兩直線重合,所以舍去.當(dāng)時,兩直線平行,滿足題意.故答案為:【點睛】本題主要考查兩直線平行的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.16、.【解析】

根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【詳解】由三角函數(shù)的定義可得,,故答案為.【點睛】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關(guān)鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)由及已知得,由此列方程組能求出實數(shù);(2)由,可得,由此能求出的值.【詳解】(1)由題意得(3,2)=m(-1,2)+n(4,1),所以,解得;(2)∵a+kc=(3+4k,2+k),2b-a=(-5,2),∴2×(3+4k)-(-5)×(2+k)=0.∴k=.【點睛】本題主要考查相等向量與共線向量的性質(zhì),屬于簡單題.利用向量的位置關(guān)系求參數(shù)是出題的熱點,主要命題方式有兩個:(1)兩向量平行,利用解答;(2)兩向量垂直,利用解答.18、(1).(2)【解析】

(1)根據(jù)基函數(shù)的定義列方程,比較系數(shù)后求得的值.(2)設(shè)出的表達(dá)式,利用為偶函數(shù),結(jié)合偶函數(shù)的定義列方程,化簡求得,由此化簡的表達(dá)式,構(gòu)造函數(shù),利用定義法證得在上的單調(diào)性,由此求得的最小值,也即的最小值,從而求得的最小值,結(jié)合題目所給條件,求出的值,即求得的解析式.【詳解】解:(1)由已知得,即,得,所以.(2)設(shè),則.由,得,整理得,即,即對任意恒成立,所以.所以.設(shè),,令,則,任取,且則,因為,且所以,,,故即,所以在單調(diào)遞增,所以,且當(dāng)時取到“”.所以,又在區(qū)間的最小值為,所以,且,此時,所以【點睛】本小題主要考查新定義函數(shù)的理解和運(yùn)用,考查函數(shù)的單調(diào)性、奇偶性的運(yùn)用,考查利用定義法證明函數(shù)的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查函數(shù)與方程的思想,綜合性較強(qiáng),屬于中檔題.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由面積公式推出,代入所給等式可得,求出角C的余弦值從而求得角C;(Ⅱ)首先由求出邊c,再由面積公式代入相應(yīng)值求出邊b,利用余弦定理即可求出邊a.【詳解】(Ⅰ)由得①于是,即∴又,所以(Ⅱ),由得,將代入中得,解得.【點睛】本題考查余弦定理解三角形,三角形面積公式,屬于基礎(chǔ)題.20、(1);(2)【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論