2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題含解析_第1頁(yè)
2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題含解析_第2頁(yè)
2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題含解析_第3頁(yè)
2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題含解析_第4頁(yè)
2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆內(nèi)蒙古呼倫貝爾市名校高一下數(shù)學(xué)期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.若集合A=α|α=π6+kπ,k∈ZA.? B.π6 C.-π2.平面過(guò)正方體ABCD—A1B1C1D1的頂點(diǎn)A,,,,則m,n所成角的正弦值為A. B. C. D.3.已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則實(shí)數(shù)的取值范圍是().A. B. C. D.4.“數(shù)列為等比數(shù)列”是“數(shù)列為等比數(shù)列”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.非充分非必要條件5.等比數(shù)列中,,,則公比等于()A.2 B.3 C. D.6.下列不等式正確的是()A.若,則 B.若,則C.若,則 D.若,則7.向量,,若,則()A.2 B. C. D.8.已知函數(shù)的圖像關(guān)于直線對(duì)稱,則可能取值是().A. B. C. D.9.如圖所示,在正四棱錐中,分別是,,的中點(diǎn),動(dòng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),下列結(jié)論不恒成立的是().A.與異面 B.面 C. D.10.已知向量,則下列結(jié)論正確的是A. B. C.與垂直 D.二、填空題:本大題共6小題,每小題5分,共30分。11.若甲、乙、丙三人隨機(jī)地站成一排,則甲、乙兩人相鄰而站的概率為_(kāi)________.12.球的內(nèi)接圓柱的表面積為,側(cè)面積為,則該球的表面積為_(kāi)______13.已知向量,則___________.14.在中,若,,,則________.15.已知三棱柱的側(cè)棱與底面邊長(zhǎng)都相等,在底面內(nèi)的射影為的中心,則與底面所成角的正弦值等于.16.若是三角形的內(nèi)角,且,則等于_____________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.如圖長(zhǎng)方體中,,分別為棱,的中點(diǎn)(1)求證:平面平面;(2)請(qǐng)?jiān)诖痤}卡圖形中畫出直線與平面的交點(diǎn)(保留必要的輔助線),寫出畫法并計(jì)算的值(不必寫出計(jì)算過(guò)程).18.已知函數(shù).(1)求的值;(2)設(shè),求的值.19.(1)證明:;(2)證明:對(duì)任何正整數(shù)n,存在多項(xiàng)式函數(shù),使得對(duì)所有實(shí)數(shù)x均成立,其中均為整數(shù),當(dāng)n為奇數(shù)時(shí),,當(dāng)n為偶數(shù)時(shí),;(3)利用(2)的結(jié)論判斷是否為有理數(shù)?20.智能手機(jī)的出現(xiàn),改變了我們的生活,同時(shí)也占用了我們大量的學(xué)習(xí)時(shí)間.某市教育機(jī)構(gòu)從名手機(jī)使用者中隨機(jī)抽取名,得到每天使用手機(jī)時(shí)間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:,.(1)根據(jù)頻率分布直方圖,估計(jì)這名手機(jī)使用者中使用時(shí)間的中位數(shù)是多少分鐘?(精確到整數(shù))(2)估計(jì)手機(jī)使用者平均每天使用手機(jī)多少分鐘?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)(3)在抽取的名手機(jī)使用者中在和中按比例分別抽取人和人組成研究小組,然后再?gòu)难芯啃〗M中選出名組長(zhǎng).求這名組長(zhǎng)分別選自和的概率是多少?21.如圖,在平面四邊形中,,,的面積為.⑴求的長(zhǎng);⑵若,,求的長(zhǎng).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

先化簡(jiǎn)集合A,B,再求A∩B.【詳解】由題得B={x|-1≤x≤3},A=?所以A∩B=π故選:B【點(diǎn)睛】本題主要考查一元二次不等式的解法和集合的交集運(yùn)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題,2、A【解析】

試題分析:如圖,設(shè)平面平面=,平面平面=,因?yàn)槠矫?,所以,則所成的角等于所成的角.延長(zhǎng),過(guò)作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【點(diǎn)睛】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補(bǔ).3、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開(kāi)口朝上,且以直線x=1為對(duì)稱軸的拋物線,故當(dāng)x=1時(shí),g(x)取最小值﹣2,當(dāng)x=2時(shí),函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點(diǎn)睛:圖像上存在關(guān)于軸對(duì)稱的點(diǎn),即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問(wèn)題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點(diǎn)即可;這是解決方程有解,圖像有交點(diǎn),函數(shù)有零點(diǎn)的常見(jiàn)方法。4、A【解析】

數(shù)列是等比數(shù)列與命題是等比數(shù)列是否能互推,然后根據(jù)必要條件、充分條件和充要條件的定義進(jìn)行判斷.【詳解】若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列是等比數(shù)列,若數(shù)列是等比數(shù)列,則,∴,∴數(shù)列不是等比數(shù)列,∴數(shù)列是等比數(shù)列是數(shù)列是等比數(shù)列的充分非必要條件,故選:A.【點(diǎn)睛】本題主要考查充分不必要條件的判斷,注意等比數(shù)列的性質(zhì)的靈活運(yùn)用,屬于基礎(chǔ)題.5、A【解析】

由題意利用等比數(shù)列的通項(xiàng)公式,求出公比的值.【詳解】解:等比數(shù)列中,,,,則公比,故選:.【點(diǎn)睛】本題主要考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】試題分析:A.若c<0,則不等號(hào)改變,若c=0,兩式相等,故A錯(cuò)誤;B.若,則,故,故B正確;C.若b=0,則表達(dá)是不成立故C錯(cuò)誤;D.c=0時(shí)錯(cuò)誤.考點(diǎn):不等式的性質(zhì).7、C【解析】試題分析:,,得得,故選C.考點(diǎn):向量的垂直運(yùn)算,向量的坐標(biāo)運(yùn)算.8、D【解析】

根據(jù)正弦型函數(shù)的對(duì)稱性,可以得到一個(gè)等式,結(jié)合四個(gè)選項(xiàng)選出正確答案.【詳解】因?yàn)楹瘮?shù)的圖像關(guān)于直線對(duì)稱,所以有,當(dāng)時(shí),,故本題選D.【點(diǎn)睛】本題考查了正弦型函數(shù)的對(duì)稱性,考查了數(shù)學(xué)運(yùn)算能力.9、D【解析】如圖所示,連接AC、BD相交于點(diǎn)O,連接EM,EN.(1)由正四棱錐S?ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC.∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分別是BC,CD,SC的中點(diǎn),∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故C正確.(2)由異面直線的定義可知:EP與SD是異面直線,故A正確;(3)由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此B正確.(4)當(dāng)P與M重合時(shí),有∥,其他情況都是異面直線即D不正確.故選D點(diǎn)睛:本題抓住正四棱錐的特征,頂點(diǎn)在底面的投影為底面正方形的中心,即SO⊥底面ABCD,EP為動(dòng)直線,所以要證EP∥面,可先證EP所在的平面平行于面SBD,要證⊥可先證AC垂直于EP所在的平面,所以化動(dòng)為靜的處理思想在立體中常用.10、C【解析】

可按各選擇支計(jì)算.【詳解】由題意,,A錯(cuò);,B錯(cuò);,∴,C正確;∵不存在實(shí)數(shù),使得,∴不正確,D錯(cuò),故選C.【點(diǎn)睛】本題考查向量的數(shù)量積、向量的平行,向量的模以及向量的垂直等知識(shí),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】記甲、乙兩人相鄰而站為事件A甲、乙、丙三人隨機(jī)地站成一排的所有排法有=6,則甲、乙兩人相鄰而站的戰(zhàn)法有=4種站法∴=12、【解析】

設(shè)底面半徑為,圓柱的高為,根據(jù)圓柱求得和的值,進(jìn)而利用圓柱的軸截面求得球的半徑,利用球的表面積公式,即可求解.【詳解】由題意,設(shè)底面半徑為,圓柱的高為,則圓柱的底面面積為,解得,側(cè)面積,解得,則圓柱的軸截面是邊長(zhǎng)分別為4和3的矩形,其對(duì)角線長(zhǎng)為5,所以外接球的半徑為,所以球的表面積為.【點(diǎn)睛】本題主要考查了圓柱的表面積和側(cè)面積公式的應(yīng)用,以及球的表面積公式應(yīng)用,其中解答中正確理解空間幾何體的結(jié)構(gòu)特征是解答的關(guān)鍵,著重考查了空間想象能力,以及推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】

根據(jù)向量夾角公式可求出結(jié)果.【詳解】.【點(diǎn)睛】本題考查了向量夾角的運(yùn)算,牢記平面向量的夾角公式是破解問(wèn)題的關(guān)鍵.14、2;【解析】

利用余弦定理可構(gòu)造關(guān)于的方程,解方程求得結(jié)果.【詳解】由余弦定理得:解得:或(舍)本題正確結(jié)果:【點(diǎn)睛】本題考查利用余弦定理解三角形,屬于基礎(chǔ)題.15、【解析】試題分析:由題意得,不妨設(shè)棱長(zhǎng)為,如圖,在底面內(nèi)的射影為的中心,故,由勾股定理得,過(guò)作平面,則為與底面所成角,且,作于中點(diǎn),所以,所以,所以與底面所成角的正弦值為.考點(diǎn):直線與平面所成的角.16、【解析】∵是三角形的內(nèi)角,且,∴故答案為點(diǎn)睛:本題是一道易錯(cuò)題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)證明;(2);畫圖見(jiàn)解析【解析】

(1)推導(dǎo)出平面,得出,得出,從而得到,進(jìn)而證出平面,由此證得平面平面.(2)根據(jù)通過(guò)輔助線推出線面平行再推出線線平行,再根據(jù)“一條和平面不平行的直線與平面的公共點(diǎn)即為直線與平面的交點(diǎn)”得到點(diǎn)位置,然后計(jì)算的值.【詳解】(1)證明:在長(zhǎng)方體中,,分別為棱,的中點(diǎn),所以平面,則,在中,,在中,,所以,因?yàn)樵谥校?,所以,所以,又因?yàn)椋云矫?,因?yàn)槠矫?,所以平面平面?)如圖所示:設(shè),連接,取中點(diǎn)記為,過(guò)作,且,則.證明:因?yàn)闉橹悬c(diǎn),所以且;又因?yàn)?,且,所以且,所以四邊形為平行四邊形,則;又因?yàn)?,所以,且平面,所以平面;又因?yàn)?,則,平面,即點(diǎn)為直線與平面的交點(diǎn);因?yàn)椋?,則;且有上述證明可知:四邊形為平行四邊形,所以,所以,因?yàn)椋?【點(diǎn)睛】本題考查線面位置關(guān)系的判定與證明,熟練掌握空間中線面位置關(guān)系的定義、判定、幾何特征是解答的關(guān)鍵,其中垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見(jiàn)類型:(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行;(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直;(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.18、(1);(2).【解析】試題分析:(1)直接帶入求值;(2)將和直接帶入函數(shù),會(huì)得到和的值,然后根據(jù)的值.試題解析:解:(1)(2)考點(diǎn):三角函數(shù)求值19、(1)見(jiàn)解析;(2)見(jiàn)解析;(3)不是【解析】

(1),利用兩角和的正弦和二倍角公式,進(jìn)行證明;(2)對(duì)分奇偶,即和兩種情況,結(jié)合兩角和的余弦公式,積化和差公式,利用數(shù)學(xué)歸納法進(jìn)行證明;(3)根據(jù)(2)的結(jié)論,將表示出來(lái),然后判斷其每一項(xiàng)都為無(wú)理數(shù),從而得到答案.【詳解】(1)所以原式得證.(2)為奇數(shù)時(shí),時(shí),,其中,成立時(shí),,其中,成立時(shí),,其中,成立,則當(dāng)時(shí),所以得到因?yàn)榫鶠檎麛?shù),所以也均為整數(shù),故原式成立;為偶數(shù)時(shí),時(shí),,其中,時(shí),,其中,成立,時(shí),,其中,成立,則當(dāng)時(shí),所以得到其中,因?yàn)榫鶠檎麛?shù),所以也均為整數(shù),故原式成立;綜上可得:對(duì)任何正整數(shù),存在多項(xiàng)式函數(shù),使得對(duì)所有實(shí)數(shù)均成立,其中,均為整數(shù),當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),;(3)由(2)可得其中均為有理數(shù),因?yàn)闉闊o(wú)理數(shù),所以均為無(wú)理數(shù),故為無(wú)理數(shù),所以不是有理數(shù).【點(diǎn)睛】本題考查利三角函數(shù)的二倍角的余弦公式,積化和差公式,數(shù)學(xué)歸納法證明,屬于難題.20、(1)分鐘.(2)58分鐘;(3)【解析】

(1)根據(jù)中位數(shù)將頻率二等分可直接求得結(jié)果;(2)每組數(shù)據(jù)中間值與對(duì)應(yīng)小矩形的面積乘積的總和即為平均數(shù);(3)采用列舉法分別列出所有基本事件和符合題意的基本事件,根據(jù)古典概型概率公式求得結(jié)果.【詳解】(1)設(shè)中位數(shù)為,則解得:(分鐘)這名手機(jī)使用者中使用時(shí)間的中位數(shù)是分鐘(2)平均每天使用手機(jī)時(shí)間為:(分鐘)即手機(jī)使用者平均每天使用手機(jī)時(shí)間為分鐘(3)設(shè)在內(nèi)抽取的兩人分別為,在內(nèi)抽取的三人分別為,則從五人中選出兩人共有以下種情況:兩名組長(zhǎng)分別選自和的共有以下種情況:所求概率【點(diǎn)睛】本題考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論