版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
山西省太原市新高考仿真模擬數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.三棱柱中,底面邊長和側(cè)棱長都相等,,則異面直線與所成角的余弦值為()A. B. C. D.2.已知函數(shù),則()A. B.1 C.-1 D.03.設(shè)函數(shù)滿足,則的圖像可能是A. B.C. D.4.若,則下列關(guān)系式正確的個(gè)數(shù)是()①②③④A.1 B.2 C.3 D.45.已知向量,,,若,則()A. B. C. D.6.如圖,點(diǎn)E是正方體ABCD-A1B1C1D1的棱DD1的中點(diǎn),點(diǎn)F,M分別在線段AC,BD1(不包含端點(diǎn))上運(yùn)動(dòng),則()A.在點(diǎn)F的運(yùn)動(dòng)過程中,存在EF//BC1B.在點(diǎn)M的運(yùn)動(dòng)過程中,不存在B1M⊥AEC.四面體EMAC的體積為定值D.四面體FA1C1B的體積不為定值7.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.48.已知實(shí)數(shù),滿足約束條件,則目標(biāo)函數(shù)的最小值為A. B.C. D.9.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值是()A.7 B.5 C.3 D.210.曲線在點(diǎn)處的切線方程為,則()A. B. C.4 D.811.已知復(fù)數(shù),則()A. B. C. D.212.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的圖象在處的切線與直線互相垂直,則_____.14.已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.15.已知圓,直線與圓交于兩點(diǎn),,若,則弦的長度的最大值為_______.16.已知,,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍.18.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(diǎn)(1,),A,B分別為橢圓C的左、右頂點(diǎn),過左焦點(diǎn)F的直線l交橢圓C于D,E兩點(diǎn)(其中D在x軸上方).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.19.(12分)武漢有“九省通衢”之稱,也稱為“江城”,是國家歷史文化名城.其中著名的景點(diǎn)有黃鶴樓、戶部巷、東湖風(fēng)景區(qū)等等.(1)為了解“五·一”勞動(dòng)節(jié)當(dāng)日江城某旅游景點(diǎn)游客年齡的分布情況,從年齡在22歲到52歲的游客中隨機(jī)抽取了1000人,制成了如圖的頻率分布直方圖:現(xiàn)從年齡在內(nèi)的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機(jī)抽取4人,記4人中年齡在內(nèi)的人數(shù)為,求;(2)為了給游客提供更舒適的旅游體驗(yàn),該旅游景點(diǎn)游船中心計(jì)劃在2020年勞動(dòng)節(jié)當(dāng)日投入至少1艘至多3艘型游船供游客乘坐觀光.由2010到2019這10年間的數(shù)據(jù)資料顯示每年勞動(dòng)節(jié)當(dāng)日客流量(單位:萬人)都大于1.將每年勞動(dòng)節(jié)當(dāng)日客流量數(shù)據(jù)分成3個(gè)區(qū)間整理得表:勞動(dòng)節(jié)當(dāng)日客流量頻數(shù)(年)244以這10年的數(shù)據(jù)資料記錄的3個(gè)區(qū)間客流量的頻率作為每年客流量在該區(qū)間段發(fā)生的概率,且每年勞動(dòng)節(jié)當(dāng)日客流量相互獨(dú)立.該游船中心希望投入的型游船盡可能被充分利用,但每年勞動(dòng)節(jié)當(dāng)日型游船最多使用量(單位:艘)要受當(dāng)日客流量(單位:萬人)的影響,其關(guān)聯(lián)關(guān)系如下表:勞動(dòng)節(jié)當(dāng)日客流量型游船最多使用量123若某艘型游船在勞動(dòng)節(jié)當(dāng)日被投入且被使用,則游船中心當(dāng)日可獲得利潤3萬元;若某艘型游船勞動(dòng)節(jié)當(dāng)日被投入?yún)s不被使用,則游船中心當(dāng)日虧損0.5萬元.記(單位:萬元)表示該游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤,的數(shù)學(xué)期望越大游船中心在勞動(dòng)節(jié)當(dāng)日獲得的總利潤越大,問該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入多少艘型游船才能使其當(dāng)日獲得的總利潤最大?20.(12分)如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.(1)證明:平面.(2)三棱錐的體積最大時(shí),求二面角的余弦值.21.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點(diǎn)在線段上移動(dòng)(不與重合),是的中點(diǎn).(1)當(dāng)四面體的外接球的表面積為時(shí),證明:.平面(2)當(dāng)四面體的體積最大時(shí),求平面與平面所成銳二面角的余弦值.22.(10分)在平面直角坐標(biāo)系xOy中,曲線的參數(shù)方程為(為參數(shù)).以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程;(2)設(shè)和交點(diǎn)的交點(diǎn)為,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
設(shè),,,根據(jù)向量線性運(yùn)算法則可表示出和;分別求解出和,,根據(jù)向量夾角的求解方法求得,即可得所求角的余弦值.【詳解】設(shè)棱長為1,,,由題意得:,,,又即異面直線與所成角的余弦值為:本題正確選項(xiàng):【點(diǎn)睛】本題考查異面直線所成角的求解,關(guān)鍵是能夠通過向量的線性運(yùn)算、數(shù)量積運(yùn)算將問題轉(zhuǎn)化為向量夾角的求解問題.2、A【解析】
由函數(shù),求得,進(jìn)而求得的值,得到答案.【詳解】由題意函數(shù),則,所以,故選A.【點(diǎn)睛】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】根據(jù)題意,確定函數(shù)的性質(zhì),再判斷哪一個(gè)圖像具有這些性質(zhì).由得是偶函數(shù),所以函數(shù)的圖象關(guān)于軸對(duì)稱,可知B,D符合;由得是周期為2的周期函數(shù),選項(xiàng)D的圖像的最小正周期是4,不符合,選項(xiàng)B的圖像的最小正周期是2,符合,故選B.4、D【解析】
a,b可看成是與和交點(diǎn)的橫坐標(biāo),畫出圖象,數(shù)形結(jié)合處理.【詳解】令,,作出圖象如圖,由,的圖象可知,,,②正確;,,有,①正確;,,有,③正確;,,有,④正確.故選:D.【點(diǎn)睛】本題考查利用函數(shù)圖象比較大小,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.5、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.6、C【解析】
采用逐一驗(yàn)證法,根據(jù)線線、線面之間的關(guān)系以及四面體的體積公式,可得結(jié)果.【詳解】A錯(cuò)誤由平面,//而與平面相交,故可知與平面相交,所以不存在EF//BC1B錯(cuò)誤,如圖,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正確四面體EMAC的體積為其中為點(diǎn)到平面的距離,由//,平面,平面所以//平面,則點(diǎn)到平面的距離即點(diǎn)到平面的距離,所以為定值,故四面體EMAC的體積為定值錯(cuò)誤由//,平面,平面所以//平面,則點(diǎn)到平面的距離即為點(diǎn)到平面的距離,所以為定值所以四面體FA1C1B的體積為定值故選:C【點(diǎn)睛】本題考查線面、線線之間的關(guān)系,考驗(yàn)分析能力以及邏輯推理能力,熟練線面垂直與平行的判定定理以及性質(zhì)定理,中檔題.7、B【解析】
解出,分別代入選項(xiàng)中的值進(jìn)行驗(yàn)證.【詳解】解:,.當(dāng)時(shí),,此時(shí)不成立.當(dāng)時(shí),,此時(shí)成立,符合題意.故選:B.【點(diǎn)睛】本題考查了不等式的解法,考查了集合的關(guān)系.8、B【解析】
作出不等式組對(duì)應(yīng)的平面區(qū)域,目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到的最小值.【詳解】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:目標(biāo)函數(shù)的幾何意義為動(dòng)點(diǎn)到定點(diǎn)的斜率,當(dāng)位于時(shí),此時(shí)的斜率最小,此時(shí).故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用以及兩點(diǎn)之間的斜率公式的計(jì)算,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.9、B【解析】
由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得結(jié)論.【詳解】畫出約束條件,表示的可行域,如圖,由可得,將變形為,平移直線,由圖可知當(dāng)直經(jīng)過點(diǎn)時(shí),直線在軸上的截距最大,最大值為,故選B.【點(diǎn)睛】本題主要考查線性規(guī)劃中,利用可行域求目標(biāo)函數(shù)的最值,屬于簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.10、B【解析】
求函數(shù)導(dǎo)數(shù),利用切線斜率求出,根據(jù)切線過點(diǎn)求出即可.【詳解】因?yàn)?,所以,故,解得,又切線過點(diǎn),所以,解得,所以,故選:B【點(diǎn)睛】本題主要考查了導(dǎo)數(shù)的幾何意義,切線方程,屬于中檔題.11、C【解析】
根據(jù)復(fù)數(shù)模的性質(zhì)即可求解.【詳解】,,故選:C【點(diǎn)睛】本題主要考查了復(fù)數(shù)模的性質(zhì),屬于容易題.12、D【解析】
將復(fù)數(shù)化簡(jiǎn)得,,即可得到對(duì)應(yīng)的點(diǎn)為,即可得出結(jié)果.【詳解】,對(duì)應(yīng)的點(diǎn)位于第四象限.故選:.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,考查共軛復(fù)數(shù)和復(fù)數(shù)與平面內(nèi)點(diǎn)的對(duì)應(yīng),難度容易.二、填空題:本題共4小題,每小題5分,共20分。13、1.【解析】
求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線垂直的直線斜率的關(guān)系建立方程關(guān)系進(jìn)行求解即可.【詳解】函數(shù)的圖象在處的切線與直線垂直,函數(shù)的圖象在的切線斜率本題正確結(jié)果:【點(diǎn)睛】本題主要考查直線垂直的應(yīng)用以及導(dǎo)數(shù)的幾何意義,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.14、164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點(diǎn)睛】本題主要考查了多項(xiàng)式展開中的特定項(xiàng)的求解,可以用賦值法也可以用二項(xiàng)展開的通項(xiàng)公式求解,屬于中檔題.15、【解析】
設(shè)為的中點(diǎn),根據(jù)弦長公式,只需最小,在中,根據(jù)余弦定理將表示出來,由,得到,結(jié)合弦長公式得到,求出點(diǎn)的軌跡方程,即可求解.【詳解】設(shè)為的中點(diǎn),在中,,①在中,,②①②得,即,,.,得.所以,.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系、相交弦長的最值,解題的關(guān)鍵求出點(diǎn)的軌跡方程,考查計(jì)算求解能力,屬于中檔題.16、【解析】
由已知利用同角三角函數(shù)的基本關(guān)系式可求得,的值,由兩角差的正弦公式即可計(jì)算得的值.【詳解】,,,,,,,,.故答案為:【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式,需熟記公式,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)分類討論去絕對(duì)值號(hào),即可求解;(2)原不等式可轉(zhuǎn)化為在R上恒成立,分別求函數(shù)與的最小值,根據(jù)能同時(shí)成立,可得的最小值,即可求解.【詳解】(1)①當(dāng)時(shí),不等式可化為,得,無解;②當(dāng)-2≤x≤1時(shí),不等式可化為得x>0,故0<x≤1;③當(dāng)x>1時(shí),不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當(dāng)時(shí),又當(dāng)時(shí),取得最小值,且又所以當(dāng)時(shí),與同時(shí)取得最小值.所以所以,即實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題主要考查了含絕對(duì)值不等式的解法,分類討論,函數(shù)的最值,屬于中檔題.18、(1)(2).【解析】
(1)利用離心率和橢圓經(jīng)過的點(diǎn)建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標(biāo)之間的關(guān)系,聯(lián)立方程結(jié)合韋達(dá)定理可求.【詳解】解:(1)設(shè)焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設(shè)l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點(diǎn)睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進(jìn)行求解,面積問題的合理轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運(yùn)算的核心素養(yǎng).19、(1);(2)投入3艘型游船使其當(dāng)日獲得的總利潤最大【解析】
(1)首先計(jì)算出在,內(nèi)抽取的人數(shù),然后利用超幾何分布概率計(jì)算公式,計(jì)算出.(2)分別計(jì)算出投入艘游艇時(shí),總利潤的期望值,由此確定當(dāng)日游艇投放量.【詳解】(1)年齡在內(nèi)的游客人數(shù)為150,年齡在內(nèi)的游客人數(shù)為100;若采用分層抽樣的方法抽取10人,則年齡在內(nèi)的人數(shù)為6人,年齡在內(nèi)的人數(shù)為4人.可得.(2)①當(dāng)投入1艘型游船時(shí),因客流量總大于1,則(萬元).②當(dāng)投入2艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:2.56此時(shí)(萬元).③當(dāng)投入3艘型游船時(shí),若,則,此時(shí);若,則,此時(shí);若,則,此時(shí);此時(shí)的分布列如下表:25.59此時(shí)(萬元).由于,則該游船中心在2020年勞動(dòng)節(jié)當(dāng)日應(yīng)投入3艘型游船使其當(dāng)日獲得的總利潤最大.【點(diǎn)睛】本小題主要考查分層抽樣,考查超幾何分布概率計(jì)算公式,考查隨機(jī)變量分布列和期望的求法,考查分析與思考問題的能力,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.20、(1)見解析(2)【解析】
(1)利用面面垂直的性質(zhì)定理證得平面,由此證得,根據(jù)圓的幾何性質(zhì)證得,由此證得平面.(2)判斷出三棱錐的體積最大時(shí)點(diǎn)的位置.建立空間直角坐標(biāo)系,通過平面和平面的法向量,計(jì)算出二面角的余弦值.【詳解】(1)證明:因?yàn)槠矫嫫矫媸钦叫危云矫?因?yàn)槠矫?,所?因?yàn)辄c(diǎn)在以為直徑的半圓弧上,所以.又,所以平面.(2)解:顯然,當(dāng)點(diǎn)位于的中點(diǎn)時(shí),的面積最大,三棱錐的體積也最大.不妨設(shè),記中點(diǎn)為,以為原點(diǎn),分別以的方向?yàn)檩S、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,設(shè)平面的法向量為,則令,得.設(shè)平面的法向量為,則令,得,所以.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點(diǎn),再證明平面平面,進(jìn)而
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 罕見腫瘤的精準(zhǔn)醫(yī)療與個(gè)體化治療
- 預(yù)算評(píng)審質(zhì)量控制制度
- 2026年咸陽市高新一中教師招聘?jìng)淇碱}庫及答案詳解(考點(diǎn)梳理)
- 罕見腫瘤的個(gè)體化治療治療策略優(yōu)化經(jīng)驗(yàn)與推廣
- 2025年建筑施工企業(yè)收發(fā)文管理制度
- 出納與財(cái)務(wù)制度
- 非稅收入財(cái)務(wù)制度
- 養(yǎng)豬小規(guī)模企業(yè)財(cái)務(wù)制度
- 餐廳收銀財(cái)務(wù)制度
- 地產(chǎn)項(xiàng)目財(cái)務(wù)制度
- 中藥材及中藥飲片知識(shí)培訓(xùn)
- 高一政治必修1、必修2基礎(chǔ)知識(shí)必背資料
- DB4114T 105-2019 黃河故道地區(qū)蘋果化學(xué)疏花疏果技術(shù)規(guī)程
- 如何高效向GPT提問
- GB/T 44179-2024交流電壓高于1 000 V和直流電壓高于1 500 V的變電站用空心支柱復(fù)合絕緣子定義、試驗(yàn)方法和接收準(zhǔn)則
- 德漢翻譯入門智慧樹知到期末考試答案章節(jié)答案2024年中國海洋大學(xué)
- JT-T-969-2015路面裂縫貼縫膠
- MT-T 1199-2023 煤礦用防爆柴油機(jī)無軌膠輪運(yùn)輸車輛安全技術(shù)條件
- ?;愤\(yùn)輸安全培訓(xùn)-危險(xiǎn)品運(yùn)輸車輛的安全檢查與維護(hù)
- 浙江省城市軌道交通工程預(yù)算定額(2018版)
- 新教材高中語文第二單元7風(fēng)景談秦腔課件部編版選擇性必修下冊(cè)
評(píng)論
0/150
提交評(píng)論