山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

山西省太原市四十八中2025屆高一下數(shù)學(xué)期末達(dá)標(biāo)檢測(cè)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,向量,則向量()A. B. C. D.2.如圖所示,已知兩座燈塔A和B與海洋觀察站C的距離都等于akm,燈塔A在觀察站C的北偏東20°,燈塔B在觀察站C的南偏東40°,則燈塔A與燈塔B的距離為()A.a(chǎn)km B.a(chǎn)kmC.a(chǎn)km D.2akm3.在平面直角坐標(biāo)系中,圓:,圓:,點(diǎn),動(dòng)點(diǎn),分別在圓和圓上,且,為線段的中點(diǎn),則的最小值為A.1 B.2 C.3 D.44.直線是圓在處的切線,點(diǎn)是圓上的動(dòng)點(diǎn),則點(diǎn)到直線的距離的最小值等于()A.1 B. C. D.25.已知某地區(qū)中小學(xué)生人數(shù)和近視情況分別如圖1和圖2所示,為了了解該地區(qū)中小學(xué)生的近視形成原因,按學(xué)段用分層抽樣的方法抽取該地區(qū)的學(xué)生進(jìn)行調(diào)查,則樣本容量和抽取的初中生中近視人數(shù)分別為()A., B., C., D.,6.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項(xiàng)和()A.31 B.21 C.15 D.117.在中,角所對(duì)應(yīng)的邊分別為,且滿足,則的形狀為()A.等腰三角形或直角三角形 B.等腰三角形C.直角三角形 D.等邊三角形8.在等比數(shù)列中,若,則()A.3 B. C.9 D.139.盒中裝有除顏色以外,形狀大小完全相同的3個(gè)紅球、2個(gè)白球、1個(gè)黑球,從中任取2個(gè)球,則互斥而不對(duì)立的兩個(gè)事件是()A.至少有一個(gè)白球;至少有一個(gè)紅球 B.至少有一個(gè)白球;紅、黑球各一個(gè)C.恰有一個(gè)白球:一個(gè)白球一個(gè)黑球 D.至少有一個(gè)白球;都是白球10.設(shè)函數(shù)(為常實(shí)數(shù))在區(qū)間上的最小值為,則的值等于()A.4 B.-6 C.-3 D.-4二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的通項(xiàng)公式,則_______.12.在中,角的對(duì)邊分別為,若,則_______.(僅用邊表示)13.正項(xiàng)等比數(shù)列中,,,則公比__________.14.化簡(jiǎn)sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.15.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.16.函數(shù)的反函數(shù)為__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,S3=,S6=.(1)求數(shù)列{an}的通項(xiàng)公式an;(2)令bn=6n-61+log2an,求數(shù)列{bn}的前n項(xiàng)和Tn.18.已知函數(shù)。(1)若,求不等式的解集;(2)若,且,求的最小值。19.已知向量,,且函數(shù).若函數(shù)的圖象上兩個(gè)相鄰的對(duì)稱軸距離為.(Ⅰ)求函數(shù)的解析式;(Ⅱ)若方程在時(shí),有兩個(gè)不同實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并求出的值;(Ⅲ)若函數(shù)在的最大值為2,求實(shí)數(shù)的值.20.在中,,點(diǎn)D在邊AB上,,且.(1)若的面積為,求CD;(2)設(shè),若,求證:.21.在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.(1)求內(nèi)角B的大??;(2)設(shè),,的最大值為5,求k的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

由向量減法法則計(jì)算.【詳解】.故選A.【點(diǎn)睛】本題考查向量的減法法則,屬于基礎(chǔ)題.2、B【解析】

先根據(jù)題意確定的值,再由余弦定理可直接求得的值.【詳解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故選:B.【點(diǎn)睛】本題主要考查余弦定理的應(yīng)用,屬于基礎(chǔ)題.3、A【解析】

由得,根據(jù)向量的運(yùn)算和兩點(diǎn)間的距離公式,求得點(diǎn)的軌跡方程,再利用點(diǎn)與圓的位置關(guān)系,即可求解的最小值,得到答案.【詳解】設(shè),,,由得,即,由題意可知,MN為Rt△AMB斜邊上的中線,所以,則又由,則,可得,化簡(jiǎn)得,∴點(diǎn)的軌跡是以為圓心、半徑等于的圓C3,∵M(jìn)在圓C3內(nèi),∴MN的最小值即是半徑減去M到圓心的距離,即,故選A.【點(diǎn)睛】本題主要考查了圓的方程及性質(zhì)的應(yīng)用,以及點(diǎn)圓的最值問(wèn)題,其中解答中根據(jù)圓的性質(zhì),求得點(diǎn)的軌跡方程,再利用點(diǎn)與圓的位置關(guān)系求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.4、D【解析】

先求得切線方程,然后用點(diǎn)到直線距離減去半徑可得所求的最小值.【詳解】圓在點(diǎn)處的切線為,即,點(diǎn)是圓上的動(dòng)點(diǎn),圓心到直線的距離,∴點(diǎn)到直線的距離的最小值等于.故選D.【點(diǎn)睛】圓中的最值問(wèn)題,往往轉(zhuǎn)化為圓心到幾何對(duì)象的距離的最值問(wèn)題.此類問(wèn)題是基礎(chǔ)題.5、A【解析】

根據(jù)分層抽樣的定義建立比例關(guān)系即可得到結(jié)論?!驹斀狻坑蓤D1得樣本容量為,抽取的初中生人數(shù)為人,則初中生近視人數(shù)為人,故選.【點(diǎn)睛】本題主要考查分層抽樣的應(yīng)用。6、A【解析】

由條件求出數(shù)列的公比.再利用等比數(shù)列的前項(xiàng)求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.7、A【解析】

由正弦定理進(jìn)行邊化角,再由二倍角公式可得,則或,所以或,即可判斷三角形的形狀.【詳解】由正弦定理得,則,因此在中,或,即或.故選:A【點(diǎn)睛】本題考查利用正弦定理進(jìn)行邊角互化,判斷三角形形狀,屬于基礎(chǔ)題.8、A【解析】

根據(jù)等比數(shù)列性質(zhì)即可得解.【詳解】在等比數(shù)列中,,,所以,所以,.故選:A【點(diǎn)睛】此題考查等比數(shù)列的性質(zhì),根據(jù)性質(zhì)求數(shù)列中的項(xiàng)的關(guān)系,關(guān)鍵在于熟練掌握相關(guān)性質(zhì),準(zhǔn)確計(jì)算.9、B【解析】

根據(jù)對(duì)立事件和互斥事件的定義,對(duì)每個(gè)選項(xiàng)進(jìn)行逐一分析即可.【詳解】從6個(gè)小球中任取2個(gè)小球,共有15個(gè)基本事件,因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球?yàn)?個(gè)白球和1個(gè)紅球,故至少有一個(gè)白球;至少有一個(gè)紅球,這兩個(gè)事件不互斥,故A錯(cuò)誤;因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球?yàn)?個(gè)白球和1個(gè)黑球,故恰有一個(gè)白球:一個(gè)白球一個(gè)黑球,這兩個(gè)事件不互斥,故C錯(cuò)誤;因?yàn)榇嬖谑录喝〕龅膬蓚€(gè)球都是白球,故至少有一個(gè)白球;都是白球,這兩個(gè)事件不互斥,故D錯(cuò)誤;因?yàn)橹辽儆幸粋€(gè)白球,包括:1個(gè)白球和1個(gè)紅球,1個(gè)白球和1個(gè)黑球,2個(gè)白球這3個(gè)基本事件;紅、黑球各一個(gè)只包括1個(gè)紅球1個(gè)白球這1個(gè)基本事件,故兩個(gè)事件互斥,因還有其它基本事件未包括,故不對(duì)立.故B正確.故選:B.【點(diǎn)睛】本題考查互斥事件和對(duì)立事件的辨析,屬基礎(chǔ)題.10、D【解析】試題分析:,,,當(dāng)時(shí),,故.考點(diǎn):1、三角恒等變換;2、三角函數(shù)的性質(zhì).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

本題考查的是數(shù)列求和,關(guān)鍵是構(gòu)造新數(shù)列,求和時(shí)先考慮比較特殊的前兩項(xiàng),剩余7項(xiàng)按照等差數(shù)列求和即可.【詳解】令,則所求式子為的前9項(xiàng)和.其中,,從第三項(xiàng)起,是一個(gè)以1為首項(xiàng),4為公差的等差數(shù)列,,故答案為1.【點(diǎn)睛】本題考查的是數(shù)列求和,關(guān)鍵在于把所求式子轉(zhuǎn)換成為等差數(shù)列的前項(xiàng)和,另外,帶有絕對(duì)值的數(shù)列在求和時(shí)要注意里面的特殊項(xiàng).12、【解析】

直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.13、【解析】

根據(jù)題意,由等比數(shù)列的性質(zhì)可得,進(jìn)而分析可得答案.【詳解】根據(jù)題意,等比數(shù)列中,,則,又由數(shù)列是正項(xiàng)的等比數(shù)列,所以.【點(diǎn)睛】本題主要考查了等比數(shù)列的通項(xiàng)公式的應(yīng)用,其中解答中熟記等比數(shù)列的通項(xiàng)公式,以及注意數(shù)列是正項(xiàng)等比數(shù)列是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.15、-10【解析】

向量變形為,化簡(jiǎn)得,轉(zhuǎn)化為討論夾角問(wèn)題求解.【詳解】由題線段為該圓的一條直徑,設(shè)夾角為,可得:,當(dāng)夾角為時(shí)取得最小值-10.故答案為:-10【點(diǎn)睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運(yùn)算法則進(jìn)行變形,結(jié)合線性運(yùn)算化簡(jiǎn)求得,此題也可建立直角坐標(biāo)系,三角換元設(shè)坐標(biāo)利用函數(shù)關(guān)系求最值.16、【解析】

由得,即,把與互換即可得出【詳解】由得所以把與互換,可得故答案為:【點(diǎn)睛】本題考查的是反函數(shù)的求法,較簡(jiǎn)單.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)an=a1qn-1=2n-2;(2)Tn=n2-n..【解析】

(1)根據(jù)等比數(shù)列的通項(xiàng)公式和前項(xiàng)求得.(2)將代入中,得是等差數(shù)列,再求和.【詳解】(1)∴,解得∴(2)∴∴數(shù)列是等差數(shù)列.又∴【點(diǎn)睛】本題考查等比數(shù)列和等差數(shù)列的通項(xiàng)和前項(xiàng)和,屬于基礎(chǔ)題.18、(1)答案不唯一,具體見解析(2)【解析】

(1)由,對(duì)分類討論,判斷與的大小,確定不等式的解集.(2)利用把用表示,代入表示為的函數(shù),利用基本不等式可求.【詳解】解:(1)因?yàn)椋?,由,得,即,?dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;當(dāng)時(shí),不等式的解集為;(2)因?yàn)?,由已知,可得,∴,∵,∴,∴,?dāng)且僅當(dāng)時(shí)取等號(hào),所以的最小值為?!军c(diǎn)睛】本題考查一元二次不等式的解法,基本不等式的應(yīng)用,考查分類討論的思想,運(yùn)算求解能力,屬于中檔題.19、(Ⅰ);(Ⅱ),;(Ⅲ)或【解析】

(Ⅰ)根據(jù)三角恒等變換公式化簡(jiǎn),根據(jù)周期計(jì)算,從而得出的解析式;(Ⅱ)求出在,上的單調(diào)性,計(jì)算最值和區(qū)間端點(diǎn)函數(shù)值,從而得出的范圍,根據(jù)對(duì)稱性得出的值;(Ⅲ)令,求出的范圍和關(guān)于的二次函數(shù),討論二次函數(shù)單調(diào)性,根據(jù)最大值列方程求出的值.【詳解】(Ⅰ)∵,,∴若函數(shù)的圖象上兩個(gè)相鄰的對(duì)稱軸距離為,則函數(shù)的周期,∴,即,∴(Ⅱ)由(Ⅰ)知,,當(dāng)時(shí),∴若方程在有兩個(gè)不同實(shí)數(shù)根,則.∴令,,則,,∴函數(shù)在內(nèi)的對(duì)稱軸為,∵,是方程,的兩個(gè)不同根,∴(Ⅲ)因?yàn)椋?,令,則.∴又∵,由得,∴.(1)當(dāng),即時(shí),可知在上為減函數(shù),則當(dāng)時(shí),由,解得:,不合題意,舍去.(2)當(dāng),即時(shí),結(jié)合圖象可知,當(dāng)時(shí),,由,解得,滿足題意.(3)當(dāng),即時(shí),知在上為增函數(shù),則時(shí),,由得,舍去綜上,或?yàn)樗?【點(diǎn)睛】本題考查了平面向量的數(shù)量積的運(yùn)算,三角函數(shù)的恒等變換,三角函數(shù)最值的計(jì)算,考查換元法解題思想,屬于中檔題.20、(1)(2)證明見解析【解析】

(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結(jié)果;(2)兩次利用正弦定理,結(jié)合兩角差的正弦公式、二倍角的正弦公式進(jìn)行恒等變換求出結(jié)果.【詳解】(1)因?yàn)?即,又因?yàn)?,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因?yàn)?,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論