版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北省襄陽市重點中學高一下數(shù)學期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),其圖像相鄰的兩個對稱中心之間的距離為,且有一條對稱軸為直線,則下列判斷正確的是()A.函數(shù)的最小正周期為B.函數(shù)的圖象關于直線對稱C.函數(shù)在區(qū)間上單調(diào)遞增D.函數(shù)的圖像關于點對稱2.已知:,,若函數(shù)和有完全相同的對稱軸,則不等式的解集是A. B.C. D.3.已知函數(shù)的部分圖象如圖所示,則()A. B.C. D.4.已知正實數(shù)滿足,則的最大值為()A.2 B. C.3 D.5.已知,,,則的最小值為()A. B. C.7 D.96.定義運算為執(zhí)行如圖所示的程序框圖輸出的值,則式子的值是A.-1 B.C. D.7.在正方體中,直線與平面所成角的正弦值為()A. B. C. D.8.設點M是直線上的一個動點,M的橫坐標為,若在圓上存在點N,使得,則的取值范圍是()A. B. C. D.9.下列表達式正確的是()①,②若,則③若,則④若,則A.①② B.②③ C.①③ D.③④10.如圖,在平行六面體中,M,N分別是所在棱的中點,則MN與平面的位置關系是()A.MN平面B.MN與平面相交C.MN平面D.無法確定MN與平面的位置關系二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,在正三棱柱中,是的中點,,則異面直線與所成的角為____.12.函數(shù)的值域是______.13.等比數(shù)列滿足其公比_________________14.如圖,將一個長方體用過相鄰三條棱的中點的平面截出一個棱錐,則該棱錐的體積與剩下的幾何體體積的比為________.15.函數(shù)的定義域為_____________.16.如圖,海岸線上有相距海里的兩座燈塔A,B,燈塔B位于燈塔A的正南方向.海上停泊著兩艘輪船,甲船位于燈塔A的北偏西,與A相距海里的D處;乙船位于燈塔B的北偏西方向,與B相距海里的C處,此時乙船與燈塔A之間的距離為海里,兩艘輪船之間的距離為海里.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知為等差數(shù)列,且,.(1)求的通項公式;(2)若等比數(shù)列滿足,,求數(shù)列的前項和公式.18.在直角坐標系中,已知以點為圓心的及其上一點.(1)設圓與軸相切,與圓外切,且圓心在直線上,求圓的標準方程;(2)設平行于的直線與圓相交于兩點,且,求直線的方程.19.如圖,平行四邊形中,是的中點,交于點.設,.(1)分別用,表示向量,;(2)若,,求.20.如圖,在平面四邊形中,.(Ⅰ)求;(Ⅱ)若,求.21.數(shù)列的前n項和滿足.(1)求證:數(shù)列是等比數(shù)列;(2)若數(shù)列為等差數(shù)列,且,求數(shù)列的前n項.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
本題首先可根據(jù)相鄰的兩個對稱中心之間的距離為來確定的值,然后根據(jù)直線是對稱軸以及即可確定的值,解出函數(shù)的解析式之后,通過三角函數(shù)的性質(zhì)求出最小正周期、對稱軸、單調(diào)遞增區(qū)間以及對稱中心,即可得出結果.【詳解】圖像相鄰的兩個對稱中心之間的距離為,即函數(shù)的周期為,由得,所以,又是一條對稱軸,所以,,得,又,得,所以.最小正周期,項錯誤;令,,得對稱軸方程為,,選項錯誤;由,,得單調(diào)遞增區(qū)間為,,項中的區(qū)間對應,故正確;由,,得對稱中心的坐標為,,選項錯誤,綜上所述,故選C.【點睛】本題考查根據(jù)三角函數(shù)圖像性質(zhì)來求三角函數(shù)解析式以及根據(jù)三角函數(shù)解析式得出三角函數(shù)的相關性質(zhì),考查對函數(shù)的相關性質(zhì)的理解,考查推理能力,是中檔題.2、B【解析】
,所以因此,選B.3、D【解析】
由函數(shù)的最值求出A,由周期求出,由五點法作圖求出的值,從而得出結論.【詳解】根據(jù)函數(shù)的圖象求出函數(shù)的周期,然后可以求出,通過函數(shù)經(jīng)過的最大值點求出值,即可得到函數(shù)的解析式.由函數(shù)的圖象可知:,
.
當,函數(shù)取得最大值1,所以,
,
故選D.4、B【解析】
由,然后由基本不等式可得最大值.【詳解】,當且僅當,即時,等號成立.∴所求最大值為.故選:B.【點睛】本題考查用基本不等式求最值,注意基本不等式求最值的條件:一正二定三相等.5、B【解析】
根據(jù)條件可知,,,從而得出,這樣便可得出的最小值.【詳解】;,且,;;,當且僅當時等號成立;;的最小值為.故選:.【點睛】考查基本不等式在求最值中的應用,注意應用基本不等式所滿足的條件及等號成立的條件.6、D【解析】
由已知的程序框圖可知,本程序的功能是:計算并輸出分段函數(shù)的值,由此計算可得結論.【詳解】由已知的程序框圖可知:本程序的功能是:計算并輸出分段函數(shù)的值,可得,因為,所以,,故選D.【點睛】本題主要考查條件語句以及算法的應用,屬于中檔題.算法是新課標高考的一大熱點,其中算法的交匯性問題已成為高考的一大亮,這類問題常常與函數(shù)、數(shù)列、不等式等交匯自然,很好地考查考生的信息處理能力及綜合運用知識解決問題的能力,解決算法的交匯性問題的方:(1)讀懂程序框圖、明確交匯知識,(2)根據(jù)給出問題與程序框圖處理問題即可.7、C【解析】
由題,連接,設其交平面于點易知平面,即(或其補角)為與平面所成的角,再利用等體積法求得AO的長度,即可求得的長度,可得結果.【詳解】設正方體的邊長為1,如圖,連接,設其交平面于點,則易知,,又,所以平面,即得平面.在三棱錐中,由等體積法知,,即,解得,所以.連接,則(或其補角)為與平面所成的角.在中,.故選C.【點睛】本題考查了立體幾何中線面角的求法,作出線面角是解題的關鍵,求高的長度會用到等體積法,屬于中檔題.8、D【解析】
由題意畫出圖形,根據(jù)直線與圓的位置關系可得相切,設切點為P,數(shù)形結合找出M點滿足|MP|≤|OP|的范圍,從而得到答案.【詳解】由題意可知直線與圓相切,如圖,設直線x+y?2=0與圓相切于點P,要使在圓上存在點N,使得,使得最大值大于或等于時一定存在點N,使得,而當MN與圓相切時,此時|MP|取得最大值,則有|MP|≤|OP|才能滿足題意,圖中只有在M1、M2之間才可滿足,∴的取值范圍是[0,2].故選:D.【點睛】本題考查直線與圓的位置關系,根據(jù)數(shù)形結合思想,畫圖進行分析可得,屬于中等題.9、D【解析】
根據(jù)基本不等式、不等式的性質(zhì)即可【詳解】對于①,.當,即時取,而,.即①不成立。對于②若,則,若,顯然不成立。對于③若,則,則正確。對于④若,則,則,正確。所以選擇D【點睛】本題主要考查了基本不等式以及不等式的性質(zhì),基本不等式一定要滿足一正二定三相等。屬于中等題。10、C【解析】
取的中點,連結,可證明平面平面,由于平面,可知平面.【詳解】取的中點,連結,顯然,因為平面,平面,所以平面,平面,又,故平面平面,又因為平面,所以平面.故選C.【點睛】本題考查了直線與平面的位置關系,考查了線面平行、面面平行的證明,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
要求兩條異面直線所成的角,需要通過見中點找中點的方法,找出邊的中點,連接出中位線,得到平行,從而得到兩條異面直線所成的角,得到角以后,再在三角形中求出角.【詳解】取的中點E,連AE,,易證,∴為異面直線與所成角,設等邊三角形邊長為,易算得∴在∴故答案為【點睛】本題考查異面直線所成的角,本題是一個典型的異面直線所成的角的問題,解答時也是應用典型的見中點找中點的方法,注意求角的三個環(huán)節(jié),一畫,二證,三求.12、【解析】
將函數(shù)化為的形式,再計算值域?!驹斀狻恳驗樗浴军c睛】本題考查三角函數(shù)的值域,屬于基礎題。13、【解析】
觀察式子,將兩式相除即可得到答案.【詳解】根據(jù)題意,可知,于是.【點睛】本題主要考查等比數(shù)列公比的相關計算,難度很小.14、【解析】
求出長方體體積與三棱錐的體積后即可得到棱錐的體積與剩下的幾何體體積之比.【詳解】設長方體長寬高分別為,,,所以長方體體積,三棱錐體積,所以棱錐的體積與剩下的幾何體體積的之比為:.故答案為:.【點睛】本題主要考查了長方體體積公式,三棱錐體積公式,屬于基礎題.15、【解析】函數(shù)的定義域為故答案為16、5,【解析】
為等邊三角形,所以算出,,再在中根據(jù)余弦定理易得CD的長.【詳解】因為為等邊三角形,所以.在中根據(jù)余弦定理解得.【點睛】此題考查余弦定理的實際應用,關鍵點通過已知條件轉換為數(shù)學模型再通過余弦定理求解即可,屬于較易題目.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
本試題主要是考查了等差數(shù)列的通項公式的求解和數(shù)列的前n項和的綜合運用.、(1)設公差為,由已知得解得,(2),等比數(shù)列的公比利用公式得到和.18、(1);(2)或【解析】
(1)由圓的方程求得圓心坐標和半徑,依題意可設圓的方程為,由圓與圓外切可知圓心距等于兩圓半徑的和,由此列式可求得,即可得出圓的標準方程;(2)求出所在直線的斜率,設直線的方程為,求出圓心到直線的距離,利用垂徑定理列式求得,則直線方程即可求出.【詳解】(1)因為圓為,所以圓心的坐標為,半徑.根據(jù)題意,設圓的方程為.又因為圓與圓外切,所以,解得,所以圓的標準方程為.(2)由題意可知,所以可設直線的方程為.又,所以圓心到直線的距離,即,解得或,所以直線的方程為或.【點睛】本題主要考查圓與圓的位置關系以及直線與圓的位置關系,其中運用了兩圓外切時,圓心距等于兩圓的半徑之和,還涉及到圓的方程、直線的方程和點到直線的距離公式.19、(1),(2)2【解析】
(1)由平面的加法可得,又根據(jù)三角形相似得到,再根據(jù)向量的減法可得的不等式.
(2)由平面向量數(shù)量積運算得,然后再將條件代入可得答案.【詳解】(1).由∽,又所以,即(2)由,【點睛】本題考查了平面向量的線性運算及平面向量數(shù)量積運算,屬中檔題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在中利用余弦定理即可求得結果;(Ⅱ)在中利用正弦定理構造方程即可求得結果.【詳解】(Ⅰ)在中,由余弦定理可得:(Ⅱ),在中,由正弦定理可得:,即:解得:【點睛】本題考查利用正弦定理、余弦定理解三角形的問題,考查公式的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《工業(yè)分析 Industrial Analysis》課件-鋼鐵中碳的測定(雙語)
- 2026湖南株洲市教育局直屬學校面向高校畢業(yè)生招聘教師159人筆試考試備考試題及答案解析
- 電子數(shù)據(jù)交換審計協(xié)議
- 各種蔬菜的營養(yǎng)
- WMS倉儲系統(tǒng)用戶培訓協(xié)議
- 2025湖南省招標有限責任公司廣州分公司主要負責人社會化招聘1人考試筆試模擬試題及答案解析
- 2025河南信陽藝術職業(yè)學院招才引智招聘專業(yè)技術人員32人考試筆試備考試題及答案解析
- 2025浙江紹興市中等專業(yè)學校合同制人員(融媒體工作技術員)招聘1人筆試考試參考題庫及答案解析
- 商業(yè)場所視頻監(jiān)控合作協(xié)議
- 2026昆玉職業(yè)技術學院引進高層次人才(28人)筆試考試備考試題及答案解析
- 電力安全風險管理
- 甘肅扶貧貸款管理辦法
- 原發(fā)性小腸腫瘤多學科綜合治療中國專家共識解讀課件
- 甲狀腺膿腫課件
- 醫(yī)學類大學生職業(yè)規(guī)劃
- 2026版高中漢水丑生生物-第六章第1節(jié):細胞增殖 (第1課時)
- 同型半胱氨酸的檢測及臨床應用
- 【MOOC答案】《電子線路設計、測試與實驗(二)》(華中科技大學)章節(jié)作業(yè)慕課答案
- 2025年高考數(shù)學立體幾何檢測卷(立體幾何中的三角函數(shù)應用)
- 2025年綜合類-衛(wèi)生系統(tǒng)招聘考試-護士招聘考試歷年真題摘選帶答案(5卷100題)
- 駐外銷售人員管理辦法
評論
0/150
提交評論