北京市匯文中學2025屆數(shù)學高二上期末考試試題含解析_第1頁
北京市匯文中學2025屆數(shù)學高二上期末考試試題含解析_第2頁
北京市匯文中學2025屆數(shù)學高二上期末考試試題含解析_第3頁
北京市匯文中學2025屆數(shù)學高二上期末考試試題含解析_第4頁
北京市匯文中學2025屆數(shù)學高二上期末考試試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

北京市匯文中學2025屆數(shù)學高二上期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設等比數(shù)列的前項和為,若,則()A. B.C. D.2.已知點,點關于原點的對稱點為,則()A. B.C. D.3.某企業(yè)為節(jié)能減排,用萬元購進一臺新設備用于生產(chǎn).第一年需運營費用萬元,從第二年起,每年運營費用均比上一年增加萬元,該設備每年生產(chǎn)的收入均為萬元.設該設備使用了年后,年平均盈利額達到最大值(盈利額等于收入減去成本),則等于()A. B.C. D.4.設雙曲線與橢圓:有公共焦點,.若雙曲線經(jīng)過點,設為雙曲線與橢圓的一個交點,則的余弦值為()A. B.C. D.5.若曲線與曲線在公共點處有公共切線,則實數(shù)()A. B.C. D.6.已知函數(shù),則()A. B.0C. D.17.已知數(shù)據(jù)的平均數(shù)是,方差是4,則數(shù)據(jù)的方差是()A.3.4 B.3.6C.3.8 D.48.已知橢圓的左,右焦點分別為,,直線與C交于點M,N,若四邊形的面積為且,則C的離心率為()A. B.C. D.9.的展開式中的系數(shù)是()A. B.C. D.10.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或11.設點是點,,關于平面的對稱點,則()A.10 B.C. D.3812.在等差數(shù)列中,已知,則數(shù)列的前6項之和為()A.12 B.32C.36 D.72二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則實數(shù)________________14.如圖是用斜二測畫法畫出水平放置的正三角形ABC的直觀圖,其中,則三角形的面積為______.15.如圖,四邊形為直角梯形,且,為正方形,且平面平面,,,,則______,直線與平面所成角的正弦值為______16.下列命題:①若,則;②“在中,若,則”逆命題是真命題;③命題“,”的否定是“,”;④“若,則”的否命題為“若,則”.則其中正確的是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某班主任對全班名學生進行了作業(yè)量多少與手機網(wǎng)游的調(diào)查,數(shù)據(jù)如下表:認為作業(yè)多認為作業(yè)不多總數(shù)喜歡手機網(wǎng)游不喜歡手機網(wǎng)游總數(shù)(1)若隨機地抽問這個班的一名學生,分別求事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率;(2)若在“認為作業(yè)多”的學生中已經(jīng)用分層抽樣的方法選取了名學生.現(xiàn)要從這名學生中任取名學生了解情況,求其中恰有名“不喜歡手機網(wǎng)游”的學生的概率18.(12分)橢圓:()的離心率為,遞增直線過橢圓的左焦點,且與橢圓交于兩點,若,求直線的斜率.19.(12分)命題存在,使得;命題對任意的,都有(1)若命題p為真時,求實數(shù)a的取值范圍;若命題q為假時,求實數(shù)a的取值范圍;(2)如果命題為真命題,命題為假命題,求實數(shù)a的取值范圍20.(12分)已知命題p:直線與雙曲線的右支有兩個不同的交點,命題q:直線與直線平行.(1)若,判斷命題“”的真假;(2)若命題“”為真命題,求實數(shù)k的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,∠DAB=60°,PD⊥底面ABCD,點F為棱PD的中點,二面角的余弦值為.(1)求PD的長;(2)求異面直線BF與PA所成角的余弦值;(3)求直線AF與平面BCF所成角的正弦值.22.(10分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】利用等比數(shù)列前項和的性質(zhì),,,,成等比數(shù)列求解.【詳解】解:因為數(shù)列為等比數(shù)列,則,,成等比數(shù)列,設,則,則,故,所以,得到,所以.故選:C.2、C【解析】根據(jù)空間兩點間距離公式,結合對稱性進行求解即可.【詳解】因為點關于原點的對稱點為,所以,因此,故選:C3、D【解析】設該設備第年的營運費為萬元,利用為等差數(shù)列可求年平均盈利額,利用基本不等式可求其最大值.【詳解】設該設備第年的營運費為萬元,則數(shù)列是以2為首項,2為公差的等差數(shù)列,則,則該設備使用年的營運費用總和為,設第n年的盈利總額為,則,故年平均盈利額為,因為,當且僅當時,等號成立,故當時,年平均盈利額取得最大值4.故選:D.【點睛】本題考查等差數(shù)列在實際問題中的應用,注意根據(jù)題設條件概括出數(shù)列的類型,另外用基本不等式求最值時注意檢驗等號成立的條件.4、A【解析】求出雙曲線方程,根據(jù)橢圓和雙曲線的第一定義求出的長度,從而根據(jù)余弦定理求出的余弦值【詳解】由題得,雙曲線中,所以,雙曲線方程為:,假設在第一象限,根據(jù)橢圓和雙曲線的定義可得:,解得:,,所以根據(jù)余弦定理,故選:A5、A【解析】設公共點為,根據(jù)導數(shù)的幾何意義可得出關于、的方程組,即可解得實數(shù)、的值.【詳解】設公共點為,的導數(shù)為,曲線在處的切線斜率,的導數(shù)為,曲線在處的切線斜率,因為兩曲線在公共點處有公共切線,所以,且,,所以,即解得,所以,解得,故選:A6、B【解析】先求導,再代入求值.詳解】,所以.故選:B7、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數(shù)據(jù)的方差為:.故選:B8、A【解析】根據(jù)題意可知四邊形為平行四邊形,設,進而得,根據(jù)四邊形面積求出點M的坐標,再代入橢圓方程得出關于e的方程,解方程即可.【詳解】如圖,不妨設點在第一象限,由橢圓的對稱性得四邊形為平行四邊形,設點,由,得,因為四邊形的面積為,所以,得,由,得,解得,所以,即點,代入橢圓方程,得,整理得,由,得,解得,由,得.故選:A9、B【解析】根據(jù)二項式定理求出答案即可.【詳解】的展開式中的系數(shù)是故選:B10、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據(jù),即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經(jīng)長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.11、A【解析】寫出點坐標,由對稱性易得線段長【詳解】點是點,,關于平面的對稱點,的橫標和縱標與相同,而豎標與相反,,,,直線與軸平行,,故選:A12、C【解析】利用等差數(shù)列的求和公式結合角標和定理即可求解.【詳解】解:等差數(shù)列中,所以等差數(shù)列的前6項之和為:故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,利用向量的數(shù)量積的坐標運算即可.【詳解】,則,解得故答案為:14、【解析】根據(jù)直觀圖和平面圖的關系可求出,進而利用面積公式可得三角形的面積【詳解】由已知可得則故答案為:.15、①..②..【解析】以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)空間向量的線性運算求得向量的坐標,由此求得,由線面角的空間向量求解方法求得答案.【詳解】解:以點為坐標原點,,,所在直線分別為軸,軸,軸建立空間直角坐標系(如下圖所示)由題意可知,,,因為,,所以,故設平面的法向量為,則,令,得因為,所以直線與平面所成角的正弦值為故答案為:;.16、②③④【解析】根據(jù)不等式的性質(zhì),正弦定理與四種命題的概念,命題的否定,判斷各命題【詳解】①,滿足,但,①錯;②在中,由正弦定理,因此其逆命題也是真命題,②正確;③存在命題的否定是全稱命題,命題“,”的否定是“,”,③正確;④由否命題的概念,“若,則”的否命題為“若,則”,④正確故答案為:②③④三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)事件“認為作業(yè)不多”和事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率分別為、;(2).【解析】(1)利用古典概型的概率公式可求得所求事件的概率;(2)確定所選的名學生中,“不喜歡手機網(wǎng)游”和“喜歡手機網(wǎng)游”的學生人數(shù),加以標記,列舉出所有的基本事件,確定所求事件所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【小問1詳解】解:由題意可知,全班名學生中,“認為作業(yè)不多”的學生人數(shù)為人,“喜歡手機網(wǎng)游且認為作業(yè)多”的學生人數(shù)為人,因此,隨機地抽問這個班的一名學生,事件“認為作業(yè)不多”的概率為,事件“喜歡手機網(wǎng)游且認為作業(yè)多”的概率為.【小問2詳解】解:在“認為作業(yè)多”的學生中已經(jīng)用分層抽樣的方法選取了名學生,這名學生中“不喜歡手機網(wǎng)游”的學生人數(shù)為,記為,名學生中“喜歡手機網(wǎng)游”的學生人數(shù)為,分別記為、、、,從這名學生中任取名學生,所有的基本事件有:、、、、、、、、、,共種,其中,事件“恰有名“不喜歡手機網(wǎng)游”的學生”包含的基本事件有:、、、,共種,故所求概率為.18、1【解析】根據(jù)離心率寫出,設出直線為,把直線的方程與橢圓進行聯(lián)立消,寫出韋達定理,再利用,即可解出,進而求出直線的斜率.【詳解】,.設遞增直線的方程為,把直線的方程與橢圓進行聯(lián)立:.①,②.③.把③代入①中得④.把④代入②中得...19、(1)p為真時或,q為假時;(2){或}.【解析】(1)p為真應用判別式求參數(shù)范圍;q為真,根據(jù)恒成立求參數(shù)范圍,再判斷q為假對應的參數(shù)范圍.(2)由題設易得p、q一真一假,討論p、q的真假,結合(1)的結果求a的取值范圍【小問1詳解】若p真,則有實數(shù)根,∴,解得或若q為真,則,即故q為假時,實數(shù)a的取值范圍為【小問2詳解】∵命題真命題,命題為假命題,∴p,q一真一假,當p真q假時,,可得當p假q真時,,可得綜上,實數(shù)a取值范圍為或.20、(1)命題“”為真命題(2)【解析】(1)先判斷命題p,命題q的真假,再利用復合命題的真假判斷;(2)根據(jù)命題“”真命題,由p為真命題,q為假命題求解.【小問1詳解】解:對于命題p,易知直線與雙曲線的左、右支各有一個交點,∴命題p為假命題;對于命題q,時,有與,顯然兩條直線垂直,∴命題q為假命題.∴命題“”為真命題.【小問2詳解】∵命題“”為真命題,∴p為真命題,q為假命題.對于命題p,由得,直線與雙曲線的右支有兩個不同的交點,即此方程有兩個不同的正根,∴得.對于命題q,要使命題q為真,則,解得,∴命題q為假命題,即.∴實數(shù)k的取值范圍為.21、(1)(2)(3)【解析】(1)以為軸,為軸,軸與垂直,建立如圖所示的空間直角坐標系,寫出各點坐標,設,,由空間向量法求二面角,從而求得,得長;(2)由空間向量法求異面直線所成的角;(3)由空間向量法求線面角【小問1詳解】以為軸,為軸,軸與垂直,由于菱形中,軸是的中垂線,建立如圖坐標系,則,,,設,,,,設平面一個法向量為,則,令,則,,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論