版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
內蒙古興安市2025屆高三下第一次測試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.很多關于整數規(guī)律的猜想都通俗易懂,吸引了大量的數學家和數學愛好者,有些猜想已經被數學家證明,如“費馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內容是:對于每一個正整數,如果它是奇數,則將它乘以再加1;如果它是偶數,則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.2.函數的大致圖象為()A. B.C. D.3.如圖是甲、乙兩位同學在六次數學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數和乙相等4.設雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.5.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.6.已知中,,則()A.1 B. C. D.7.已知函數是上的偶函數,是的奇函數,且,則的值為()A. B. C. D.8.若復數滿足(是虛數單位),則()A. B. C. D.9.已知,,則()A. B. C.3 D.410.已知公差不為0的等差數列的前項的和為,,且成等比數列,則()A.56 B.72 C.88 D.4011.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.12.若滿足,且目標函數的最大值為2,則的最小值為()A.8 B.4 C. D.6二、填空題:本題共4小題,每小題5分,共20分。13.復數(其中i為虛數單位)的共軛復數為________.14.正四棱柱中,,.若是側面內的動點,且,則與平面所成角的正切值的最大值為___________.15.已知函數若關于的不等式的解集是,則的值為_____.16.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養(yǎng)了此種盆栽植物10株,設為其中成活的株數,若的方差,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(是參數),以原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.18.(12分)已知兩數.(1)當時,求函數的極值點;(2)當時,若恒成立,求的最大值.19.(12分)在直角坐標系xOy中,直線的參數方程為(t為參數).以原點O為極點,x軸正半軸為極軸建立極坐標系,圓C的極坐標方程為.(1)寫出圓C的直角坐標方程;(2)設直線l與圓C交于A,B兩點,,求的值.20.(12分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點,且,當平面時,求實數的值;(2)當平面與平面所成的銳二面角大小為時,求與平面所成角的正弦.21.(12分)在直角坐標系中,已知曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,射線的極坐標方程為,射線的極坐標方程為.(Ⅰ)寫出曲線的極坐標方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.22.(10分)等差數列中,,,分別是下表第一、二、三行中的某一個數,且其中的任何兩個數不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數,使得,,成等比數列,若有,請求出的值;若沒有,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據程序框圖列舉出程序的每一步,即可得出輸出結果.【詳解】輸入,不成立,是偶數成立,則,;不成立,是偶數不成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;不成立,是偶數成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.2、A【解析】
利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數解析式判斷函數的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.3、B【解析】
由平均數、方差公式和極差、中位數概念,可得所求結論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數為,乙得分的中位數為,故正確.故選:.【點睛】本題考查莖葉圖的應用,考查平均數和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎題.4、C【解析】
求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.5、B【解析】
設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯系起來,考查計算能力,屬于中檔題.6、C【解析】
以為基底,將用基底表示,根據向量數量積的運算律,即可求解.【詳解】,,.故選:C.【點睛】本題考查向量的線性運算以及向量的基本定理,考查向量數量積運算,屬于中檔題.7、B【解析】
根據函數的奇偶性及題設中關于與關系,轉換成關于的關系式,通過變形求解出的周期,進而算出.【詳解】為上的奇函數,,而函數是上的偶函數,,,故為周期函數,且周期為故選:B【點睛】本題主要考查了函數的奇偶性,函數的周期性的應用,屬于基礎題.8、B【解析】
利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.9、A【解析】
根據復數相等的特征,求出和,再利用復數的模公式,即可得出結果.【詳解】因為,所以,解得則.故選:A.【點睛】本題考查相等復數的特征和復數的模,屬于基礎題.10、B【解析】
,將代入,求得公差d,再利用等差數列的前n項和公式計算即可.【詳解】由已知,,,故,解得或(舍),故,.故選:B.【點睛】本題考查等差數列的前n項和公式,考查等差數列基本量的計算,是一道容易題.11、D【解析】
由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.12、A【解析】
作出可行域,由,可得.當直線過可行域內的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當直線過可行域內的點時,最大,即最大,最大值為2.解方程組,得..,當且僅當,即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用復數的乘法運算求出,再利用共軛復數的概念即可求解.【詳解】由,則.故答案為:【點睛】本題考查了復數的四則運算以及共軛復數的概念,屬于基礎題.14、2.【解析】
如圖,以為原點建立空間直角坐標系,設點,由得,證明為與平面所成角,令,用三角函數表示出,求解三角函數的最大值得到結果.【詳解】如圖,以為原點建立空間直角坐標系,設點,則,,又,得即;又平面,為與平面所成角,令,當時,最大,即與平面所成角的正切值的最大值為2.故答案為:2【點睛】本題主要考查了立體幾何中的動點問題,考查了直線與平面所成角的計算.對于這類題,一般是建立空間直角坐標,在動點坐標內引入參數,將最值問題轉化為函數的最值問題求解,考查了學生的運算求解能力和直觀想象能力.15、【解析】
根據題意可知的兩根為,再根據解集的區(qū)間端點得出參數的關系,再求解即可.【詳解】解:因為函數,關于的不等式的解集是的兩根為:和;所以有:且;且;;故答案為:【點睛】本題主要考查了不等式的解集與參數之間的關系,屬于基礎題.16、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),,直線的傾斜角為(2)【解析】
(1)由公式消去參數得普通方程,由公式可得直角坐標方程后可得傾斜角;(2)求出直線與軸交點,用參數表示點坐標,求出,利用三角函數的性質可得最大值.【詳解】(1)由,消去得的普通方程是:由,得,將代入上式,化簡得直線的傾斜角為(2)在曲線上任取一點,直線與軸的交點的坐標為則當且僅當時,取最大值.【點睛】本題考查參數方程與普通方程的互化,考查極坐標方程與直角坐標方程的互化,屬于基礎題.求兩點間距離的最值時,用參數方程設點的坐標可把問題轉化為三角函數問題.18、(1)唯一的極大值點1,無極小值點.(2)1【解析】
(1)求出導函數,求得的解,確定此解兩側導數值的正負,確定極值點;(2)問題可變形為恒成立,由導數求出函數的最小值,時,無最小值,因此只有,從而得出的不等關系,得出所求最大值.【詳解】解:(1)定義域為,當時,,令得,當所以在上單調遞增,在上單調遞減,所以有唯一的極大值點,無極小值點.(2)當時,.若恒成立,則恒成立,所以恒成立,令,則,由題意,函數在上單調遞減,在上單調遞增,所以,所以所以,所以,故的最大值為1.【點睛】本題考查用導數求函數極值,研究不等式恒成立問題.在求極值時,由確定的不一定是極值點,還需滿足在兩側的符號相反.不等式恒成立深深轉化為求函數的最值,這里分離參數法起關鍵作用.19、(1);(2)20【解析】
(1)利用即可得到答案;(2)利用直線參數方程的幾何意義,.【詳解】解:(1)由,得圓C的直角坐標方程為,即.(2)將直線l的參數方程代入圓C的直角坐標方程,得,即,設兩交點A,B所對應的參數分別為,,從而,則.【點睛】本題考查了極坐標方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道容易題.20、(1);(2).【解析】
(1)連接交于點,連接,利用線面平行的性質定理可推導出,然后利用平行線分線段成比例定理可求得的值;(2)取中點,連接、,過點作,則,作于,連接,推導出,,可得出為平面與平面所成的銳二面角,由此計算出、,并證明出平面,可得出直線與平面所成的角為,進而可求得與平面所成角的正弦值.【詳解】(1)連接交于點,連接,平面,平面,平面平面,,在梯形中,,則,,,,所以,;(2)取中點,連接、,過點作,則,作于,連接.為的中點,且,,且,所以,四邊形為平行四邊形,由于,,,,,,,為的中點,所以,,,同理,,,,平面,,,,為面與面所成的銳二面角,,,,,則,,,平面,平面,,,,面,為與底面所成的角,,,.在中,.因此,與平面所成角的正弦值為.【點睛】本題考查利用線面平行的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 美術專業(yè)繪畫題庫及答案
- 安全管理人員安全教育培訓試題附參考答案
- ?醫(yī)院保潔人員院感培訓試題及答案?
- 技能應用大賽試題及答案
- 住院醫(yī)師(規(guī)培)試題及答案
- 注冊會計師《經濟法》反壟斷法律制度單元測試題附答案
- 醫(yī)院編外試題及答案
- 2025藥學專業(yè)知識一試題及答案「」
- 高頻黃巖社工面試題及答案
- 遼寧省朝陽市省直機關公開遴選公務員筆試題及答案解析(A類)
- 《鯉魚的遇險》讀書分享
- 融媒體中心黨支部2025年前三季度黨建工作總結范文
- 從2025上半年宏觀經濟及酒類景氣指數看酒類發(fā)展趨勢報告
- 2025急診監(jiān)護室CRRT相關知識考試試題及答案
- 雨水收集利用方案
- 自動扶梯應急預案演練計劃(3篇)
- 1000立方米高性能聚甲基丙稀酰亞胺(PMI)泡沫新材料技改項目可行性研究報告模板-立項備案
- 動物福利與動物倫理課件
- 寧夏科技經費管理辦法
- 擒敵拳教學課件
- (高清版)DB11∕T 2436-2025 寄生蜂類天敵繁育與應用技術規(guī)范
評論
0/150
提交評論