2025年廣東佛山高三一模高考數(shù)學試卷試題(答案詳解)_第1頁
2025年廣東佛山高三一模高考數(shù)學試卷試題(答案詳解)_第2頁
2025年廣東佛山高三一模高考數(shù)學試卷試題(答案詳解)_第3頁
2025年廣東佛山高三一模高考數(shù)學試卷試題(答案詳解)_第4頁
2025年廣東佛山高三一模高考數(shù)學試卷試題(答案詳解)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

試卷第=page11頁,共=sectionpages33頁試卷第=page11頁,共=sectionpages33頁2024~2025學年佛山市普通高中教學質(zhì)量檢測(一)高三數(shù)學2025.1本試卷共4頁,19小題.滿分150分.考試用時120分鐘.注意事項:1.答卷前,考生務必要填涂答題卷上的有關(guān)項目.2.選擇題每小題選出答案后,用2B鉛筆把答案涂在答題卷相應的位置上.3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卷各題目指定區(qū)域內(nèi);如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液,不按以上要求作答的答案無效.4.請考生保持答題卷的整潔,考試結(jié)束后,將答題卷交回.一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.1.若,則(

)A. B. C. D.2.已知集合,,若,則實數(shù)的取值范圍是(

)A. B. C. D.3.等比數(shù)列中,,設甲:,乙:,則甲是乙的(

)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.函數(shù)在區(qū)間上的零點個數(shù)為(

)A.4 B.5 C.6 D.75.隨著中國經(jīng)濟高速增長,人民生活水平不斷提高,旅游成了越來越多家庭的重要生活方式,某景區(qū)的旅游人數(shù)大約每年以的增長率呈指數(shù)增長,那么至少經(jīng)過多少年后,該景區(qū)的旅游人數(shù)翻一倍?(參考數(shù)據(jù):,)(

)A.6 B.7 C.8 D.96.在平面直角坐標系中,滿足不等式組的點表示的區(qū)域面積為(

)A. B. C. D.7.若直線與曲線相切,則的最小值為(

)A. B.1 C. D.28.已知直線與平面所成的角為,若直線,直線,設與的夾角為,與的夾角為,則(

)A., B.,C., D.,二、選擇題:本題共3小題,每小題6分,共18分.在每小題給出的選項中,有多項符合題目要求.全部選對的得6分,部分選對的得部分分,有選錯的得0分.9.有一組成對樣本數(shù)據(jù),,,,設,,由這組數(shù)據(jù)得到新成對樣本數(shù)據(jù),下面就這兩組數(shù)據(jù)分別先計算樣本相關(guān)系數(shù),再根據(jù)最小二乘法計算經(jīng)驗回歸直線,最后計算出殘差平方和,則(

)附:回歸直線的斜率和截距的最小二乘估計公式分別為:,.相關(guān)系數(shù).A.兩組數(shù)據(jù)的相關(guān)系數(shù)相同 B.兩組數(shù)據(jù)的殘差平方和相同C.兩條經(jīng)驗回歸直線的斜率相同 D.兩條經(jīng)驗回歸直線的截距相同10.在中,,,則下列說法正確的是(

)A. B.C.在方向上的投影向量為 D.若,則11.已知定義域為的函數(shù)滿足,且,為的導函數(shù),則(

)A.為偶函數(shù) B.為周期函數(shù)C. D.三、填空題:本題共3小題,每小題5分,共15分.12.的展開式中的系數(shù)是.13.記的內(nèi)角的對邊分別為且,則.14.直線過雙曲線的左焦點,交的漸近線于兩點.若,且,則的離心率為.四、解答題:本題共5小題,共77分,解答應寫出文字說明、證明過程或演算步驟.15.如圖,直三棱柱的體積為,側(cè)面是邊長為1的正方形,,點分別在棱上.(1)若分別是的中點,求證:平面;(2)若,,求.16.ACE球是指在網(wǎng)球?qū)种校环桨l(fā)球,球落在有效區(qū)內(nèi),但接球方卻沒有觸及到球而使發(fā)球方直接得分的發(fā)球.甲、乙兩人進行發(fā)球訓練,規(guī)則如下:每次由其中一人發(fā)球,若發(fā)出ACE球,則換人發(fā)球,若未發(fā)出ACE球,則兩人等可能地獲得下一次發(fā)球權(quán).設甲,乙發(fā)出ACE球的概率均為,記“第次發(fā)球的人是甲”.(1)證明:;(2)若,,求和.17.已知函數(shù),其中.(1)當時,討論關(guān)于的方程的實根個數(shù);(2)當時,證明:對于任意的實數(shù),都有.18.已知的頂點在軸上,,,且邊的中點在軸上,設的軌跡為曲線.(1)求的方程;(2)若正三角形的三個頂點都在上,且直線的傾斜角為,求.19.將項數(shù)列重新排序為的操作稱為一次“洗牌”,即排序后的新數(shù)列以為首項,將排在之后,將排在之后.對于數(shù)列,將“洗牌”后得到的新數(shù)列中數(shù)字的位置定義為.例如,當時,數(shù)列經(jīng)過一次“洗牌”后變?yōu)?,此時,,,,,.(1)寫出數(shù)列經(jīng)過3次“洗牌”后得到的新數(shù)列;(2)對于滿足的任意整數(shù),求經(jīng)過一次“洗牌”后的解析式;(3)當(其中)時,數(shù)列經(jīng)過若干次“洗牌”后能否還原為?如果能,請說明至少需要多少次“洗牌”;如果不能,請說明理由.答案第=page11頁,共=sectionpages22頁答案第=page11頁,共=sectionpages22頁1.B【分析】利用復數(shù)的除法可求.【詳解】因為,故,故選:B.2.D【分析】根據(jù)集合是否為空集進行分類討論,由此求得的取值范圍.【詳解】當時,,滿足,當時,,由,可知,綜上所述,.故選:D3.C【分析】根據(jù)等比中項可判斷兩者之間的條件關(guān)系.【詳解】因為為等比數(shù)列,故為等比數(shù)列,且三者同號,若,則由可得,故甲是乙的充分條件;若,則由及可得,故甲是乙的必要條件;故甲是乙的充要條件,故選:C.4.B【分析】利用二倍角公式可得或,故可求零點個數(shù).【詳解】令,則,故或,而,所以或或或或,故共有5個零點,故選:B.5.B【分析】根據(jù)已知條件列不等式,由此quiet正確答案.【詳解】設經(jīng)過年后,人數(shù)翻一倍,則,兩邊取以為底的對數(shù)得,所以,所以至少經(jīng)過年后,該景區(qū)的旅游人數(shù)翻一倍.故選:B6.D【分析】根據(jù)圓與圓的位置關(guān)系來求得正確答案.【詳解】依題意,,所以不等式組表示的區(qū)域是圓與圓公共的內(nèi)部區(qū)域,畫出圖象如下圖所示,,兩圓半徑都是,設兩個圓相交于兩點,則,由于,,所以是圓的切線,是圓的切線,同理是圓的切線,是圓的切線,,所以四邊形是正方形,所以區(qū)域面積為.故選:D7.A【分析】通過設切點,利用導數(shù)的幾何意義列出等式,再利用二次函數(shù)的性質(zhì)求其最小值.【詳解】設直線與曲線的切點為.對求導,根據(jù),可得.因為直線的斜率為,由導數(shù)的幾何意義可知,在切點處,即.又因為切點既在直線上又在曲線上,所以且,即.將代入可得:,即.將代入可得:,所以當,時,取得最小值為.故選:A8.A【分析】把直線和平面放置在錐體中,然后利用異面直角夾角定義,結(jié)合三余弦定理及余弦函數(shù)的單調(diào)性得,根據(jù)二面角平面角的定義,結(jié)合最大角定理及正弦函數(shù)單調(diào)性得,即可得解.【詳解】如圖,設斜線為直線,平面為平面,且,由圖可知,當恰為時,此時與的夾角為;當為時,,由于,知,故由在上單調(diào)遞減得,知.綜上可知;由于,故是二面角所成角,即,,由于,則,故由在上單調(diào)遞增得,即,可知.故選:A9.ABC【分析】利用公式求相關(guān)系數(shù),通過對公式的理解,可以作出判斷.【詳解】由于新成對樣本數(shù)據(jù),其平均數(shù)分別為,同理,這樣根據(jù)公式,用樣本數(shù)據(jù)減去平均數(shù)得與新成對數(shù)據(jù),用樣本數(shù)據(jù)減去平均數(shù)得與新成對數(shù)據(jù),即它們每一個對應數(shù)據(jù)的差值都是一樣的,這就說明兩條經(jīng)驗回歸直線的斜率相同,兩組數(shù)據(jù)的相關(guān)系數(shù)相同,故A、C正確;由于回歸直線經(jīng)過樣本數(shù)據(jù)的樣本點為,而新數(shù)據(jù)的樣本點為,即樣本數(shù)據(jù)的回歸直線方程為,而新數(shù)據(jù)的回歸直線方程為,故兩條經(jīng)驗回歸直線的截距不相同,故D錯誤;由于樣本數(shù)據(jù)回歸直線和新數(shù)據(jù)回歸直線是平行關(guān)系,所以實際值與估計值的差的平方和應該是相同的,即兩組數(shù)據(jù)的殘差平方和相同,故B正確;故選:ABC.10.AC【分析】A選項對題干條件直接根據(jù)數(shù)量積的定義,化簡成,然后根據(jù)邊角轉(zhuǎn)化求解;B選項利用兩角和的正切公式求解;C選項結(jié)合正弦定理,投影向量公式求解;D選項根據(jù)正弦定理算出三邊長度之后根據(jù)數(shù)量積定義求解.【詳解】A選項,對于,根據(jù)數(shù)量積的定義展開可得,,即,即,由正弦定理,,即,則為銳角,由,解得,,A選項正確,B選項:由A選項和題干可知,,,故,B選項錯誤.C選項:在方向上的投影向量為,由B知,,,且,解得,由正弦定理,,則,C選項正確.D選項:由正弦定理,,即,解得,于是,,D選項錯誤.故選:AC11.ABD【分析】通過對給定的函數(shù)關(guān)系式進行賦值等操作來分析函數(shù)的性質(zhì),并結(jié)合導數(shù)來判斷各個選項的正確性,從而確定正確答案.【詳解】令,代入可得:,即,所以,令,則,即,令得,以替換,則,以替換,則,所以函數(shù)是周期為的周期函數(shù).令,則,即,所以是偶函數(shù),A選項正確.因為是周期為的周期函數(shù),對兩邊求導得:,即.替換,則.以替換,則,所以是周期為的周期函數(shù),B選項正確.由的周期為,且,,,.,C選項錯誤.因為的周期為,,所以.又,兩邊求導得,即,所以.而,令,可得,即,.對兩邊求導得,令,得.對兩邊對求導,得,即令,可得,所以,則,D選項正確.故選:ABD【點睛】方法點睛:對于抽象函數(shù)性質(zhì)的研究,賦值法是一種重要手段,通過合理選取賦值,能夠挖掘出函數(shù)的奇偶性、周期性等關(guān)鍵性質(zhì).函數(shù)與其導函數(shù)之間存在緊密聯(lián)系,對函數(shù)等式兩邊求導,能從函數(shù)的性質(zhì)推導出導函數(shù)的性質(zhì),反之亦然.12.【分析】利用二項展開式的通項公式可求的系數(shù).【詳解】的展開式的通項公式為,的展開式的通項公式為,令,則的展開式中的系數(shù)為,的展開式中的系數(shù)為,故的展開式中的系數(shù)為,故答案為:.13.【分析】切化弦后結(jié)合正余弦定理可得,故可求.【詳解】因為,故,所以,整理得到:,故,故答案為:.14.【分析】先判斷出直線的斜率,由此求得直線的方程,通過聯(lián)立方程求得兩點的坐標,再根據(jù)比例列方程,化簡求得雙曲線的離心率.【詳解】雙曲線的左焦點F?c,0,到漸近線的距離為所以直線與漸近線垂直,所以直線的斜率為,直線的方程為,設Ax1,聯(lián)立,消去并化簡得點橫坐標為.聯(lián)立,消去并化簡得點橫坐標.因為,所以.即,,,.,,,,,,又因為,所以雙曲線的離心率.故答案為:【點睛】方法點睛:利用雙曲線焦點到漸近線的距離與已知條件建立聯(lián)系,確定直線與漸近線的位置關(guān)系,進而得到直線方程,這是解決本題的關(guān)鍵之一.通過聯(lián)立直線與漸近線方程求出交點坐標,再結(jié)合向量關(guān)系列出等式,最后利用雙曲線的基本性質(zhì)和離心率公式求解離心率,這是處理此類雙曲線與直線、向量綜合問題的常見方法.15.(1)證明見解析(2)【分析】(1)連接,可得,根據(jù)線面平行的判定定理可證平面;(2)建立如圖所示的空間直角坐標系,利用向量的垂直表示可求的坐標,從而可求.【詳解】(1)如圖,連接,則彼此平分,而為的中點,故為的中點,而為的中點,故,而平面,平面,故平面.(2)由直三棱柱的體積為可得,而,故,而為三角形內(nèi)角,故,故即,結(jié)合直三棱柱可建立如圖所示的空間直角坐標系,則,設,,則,而,由,可得,解得.故,故16.(1)證明見解析(2),【分析】(1)根據(jù)條件概率的意義可證明;(2)利用(1)中的結(jié)果可求,結(jié)合全概率公式可得,利用構(gòu)造法可求.【詳解】(1)若第次為甲發(fā)球的條件下第次還是甲發(fā)球,則第次甲沒有發(fā)出ACE球,故此時,若第次不是甲發(fā)球的條件下第次是甲發(fā)球,(1)乙發(fā)ACE球,則第次是甲發(fā)球;(2)乙沒有發(fā)出ACE球,則有的概率第次是甲發(fā)球;故,故.(2),,故,所以即,所以,故而,故為等比數(shù)列,故即.17.(1)答案見解析(2)證明見解析【分析】(1)利用導數(shù)研究的單調(diào)性,結(jié)合圖象確定正確答案.(2)將要證明的不等式進行轉(zhuǎn)化,利用構(gòu)造函數(shù)法,結(jié)合導數(shù)來證得不等式成立.【詳解】(1)當時,方程解的個數(shù),轉(zhuǎn)化為與y=fx有交點的個數(shù),y=fx的定義域為,令f′x>0得,令f′故在上單調(diào)遞減,在0,+∞上單調(diào)遞增,當時,,當時,,且,當時,方程有0個解,當或時,方程有1個解,當時,方程有2個解.(2)要證,即證,由于,故只需證,不妨設,即證,兩邊同時除以并化簡,即證,令,則,設,,由(1)知在0,+∞上單調(diào)遞增,故,故在0,+∞上單調(diào)遞增,所以,從而命題得證.18.(1)(2)【分析】(1)設,求得點的坐標,根據(jù)列方程,化簡求得的方程;(2)設出直線的方程并與的方程聯(lián)立,化簡寫出根與系數(shù)關(guān)系,利用弦長公式求得的表達式,根據(jù)是正三角形【詳解】(1)設,,因為是的中點且在軸上,根據(jù)中點坐標公式,若為,則,所以,即,已知,且,根據(jù)兩點間距離公式,,,因為,所以,兩邊平方可得,展開式子:,化簡得,所以曲線的方程為.(2)設,,直線的方程為,由消去得,即,由韋達定理得,,,則,,根據(jù)弦長公式(這里),所以,因為是正三角形,設中點為,則,即,直線與直線垂直,直線斜率為,則直線斜率為,點在曲線上,設,則,又因為,根據(jù)兩點間距離公式,,由,可得,由可得,即,,則,,,,由,,,兩式相減得,,解得或,當時,,當時,(舍去),所以.

【點睛】方法點睛:求軌跡方程時,常通過設動點坐標,結(jié)合已知條件找到動點坐標滿足的等式關(guān)系,再進行化簡,本題利用中點坐標關(guān)系確定點坐標,通過距離相等建立等式,是求軌跡方程的典型方法.對于直線與曲線相交的問題,聯(lián)立直線與曲線方程,利用韋達定理得到交點坐標之間的關(guān)系,進而解決弦長等問題。在涉及三角形形狀相關(guān)問題時,要充分利用三角形的性質(zhì),如正三角形三邊相等、三線合一等,建立等式求解.19.(1)(2)(3)至少需要次"洗牌".【分析】(1)直接寫出三次洗牌后的數(shù)列;(2)分和討論即可;(3)通過特殊情況猜想至少通過次"洗牌",再利用數(shù)學歸納法證明即可.【詳解】(1)數(shù)列經(jīng)過一次"洗牌"變?yōu)?,再?jīng)過一次"洗牌"變?yōu)?,第三次"洗牌"后變?yōu)椋?)依題意,當時,;當時,.因此,(3)先觀察簡單的情形.當時,數(shù)列經(jīng)過1次"洗牌"變?yōu)椋ǎ⒌剐颍ⅲ?,再?jīng)過1次"洗牌"就還原為;當時,數(shù)列經(jīng)過2次"洗牌"變?yōu)椋ǎ⒌剐颍ⅲ?,再?jīng)過2次"洗牌"就還原為;當時,由(1)知數(shù)列經(jīng)過3次"洗牌"變?yōu)椋ǎ⒌剐颍ⅲ?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論