廣西一模數(shù)學(xué)試題及答案_第1頁
廣西一模數(shù)學(xué)試題及答案_第2頁
廣西一模數(shù)學(xué)試題及答案_第3頁
廣西一模數(shù)學(xué)試題及答案_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣西一模數(shù)學(xué)試題及答案姓名:____________________

一、選擇題(每題5分,共30分)

1.已知函數(shù)f(x)=x^2-4x+3,那么f(2)的值為:

A.1

B.3

C.5

D.7

2.在直角坐標(biāo)系中,點(diǎn)A(2,3)關(guān)于直線y=x的對稱點(diǎn)為:

A.(3,2)

B.(2,3)

C.(3,3)

D.(2,2)

3.若log2(3x-2)=1,則x的值為:

A.2

B.3

C.4

D.5

4.在等差數(shù)列{an}中,若a1=2,公差d=3,那么第10項(xiàng)an的值為:

A.29

B.28

C.27

D.26

5.若等比數(shù)列{bn}中,b1=3,公比q=2,那么第4項(xiàng)bn的值為:

A.24

B.12

C.6

D.3

二、填空題(每題5分,共20分)

6.已知函數(shù)f(x)=(x-1)^2+2,那么f(2)的值為______。

7.在直角坐標(biāo)系中,點(diǎn)A(3,4)關(guān)于直線y=-x的對稱點(diǎn)為______。

8.若log5(2x+1)=2,則x的值為______。

9.在等差數(shù)列{an}中,若a1=5,公差d=-2,那么第10項(xiàng)an的值為______。

10.若等比數(shù)列{bn}中,b1=4,公比q=1/2,那么第4項(xiàng)bn的值為______。

三、解答題(每題10分,共30分)

11.(1)已知函數(shù)f(x)=x^3-3x^2+4x-6,求f(x)的極值。

(2)已知函數(shù)g(x)=x^2+2x+1,求g(x)的零點(diǎn)。

12.(1)在直角坐標(biāo)系中,已知點(diǎn)A(2,3)和點(diǎn)B(5,6),求線段AB的中點(diǎn)坐標(biāo)。

(2)已知直線l:2x-3y+6=0,求直線l與x軸的交點(diǎn)坐標(biāo)。

13.(1)若log2(x+1)=3,求x的值。

(2)若等差數(shù)列{an}中,a1=2,公差d=3,求第10項(xiàng)an的值。

四、解答題(每題10分,共30分)

14.(1)已知三角形ABC的邊長分別為a、b、c,且滿足a^2+b^2=c^2,求證:三角形ABC是直角三角形。

(2)已知等差數(shù)列{an}中,a1=1,公差d=2,求前n項(xiàng)和Sn。

15.(1)在平面直角坐標(biāo)系中,已知點(diǎn)P(2,3)和直線l:y=kx+1,求k的值,使得點(diǎn)P在直線l上。

(2)已知函數(shù)h(x)=x^2-4x+3,求h(x)在區(qū)間[1,3]上的最大值和最小值。

16.(1)若等比數(shù)列{bn}中,b1=4,公比q=1/2,求前n項(xiàng)和Sn。

(2)若數(shù)列{cn}的通項(xiàng)公式為cn=n^2-n+1,求第10項(xiàng)cn的值。

五、證明題(每題10分,共10分)

17.證明:若a、b、c是等差數(shù)列的連續(xù)三項(xiàng),那么a^2+b^2+c^2=3bc。

六、綜合題(每題20分,共20分)

18.已知函數(shù)f(x)=x^3-6x^2+11x-6,求:

(1)函數(shù)f(x)的單調(diào)區(qū)間;

(2)函數(shù)f(x)的極值點(diǎn);

(3)函數(shù)f(x)的零點(diǎn)。

姓名:____________________

四、解答題(每題10分,共30分)

14.(1)證明:已知三角形ABC的邊長分別為a、b、c,且滿足a^2+b^2=c^2,求證:三角形ABC是直角三角形。

解:由勾股定理,若a^2+b^2=c^2,則三角形ABC滿足直角三角形的條件,因此三角形ABC是直角三角形。

(2)已知等差數(shù)列{an}中,a1=1,公差d=2,求前n項(xiàng)和Sn。

解:等差數(shù)列的前n項(xiàng)和公式為Sn=n/2*(a1+an),其中an=a1+(n-1)d。代入a1=1,d=2,得Sn=n/2*(1+1+2(n-1))=n/2*(2+2n-2)=n^2。

15.(1)在平面直角坐標(biāo)系中,已知點(diǎn)P(2,3)和直線l:y=kx+1,求k的值,使得點(diǎn)P在直線l上。

解:將點(diǎn)P的坐標(biāo)代入直線l的方程,得3=2k+1,解得k=1。

(2)已知函數(shù)h(x)=x^2-4x+3,求h(x)在區(qū)間[1,3]上的最大值和最小值。

解:函數(shù)h(x)在區(qū)間[1,3]上的最大值和最小值出現(xiàn)在端點(diǎn)或極值點(diǎn)。計(jì)算h(1)=1^2-4*1+3=0,h(3)=3^2-4*3+3=0,因此最大值和最小值都是0。

16.(1)若等比數(shù)列{bn}中,b1=4,公比q=1/2,求前n項(xiàng)和Sn。

解:等比數(shù)列的前n項(xiàng)和公式為Sn=b1*(1-q^n)/(1-q)。代入b1=4,q=1/2,得Sn=4*(1-(1/2)^n)/(1-1/2)=8*(1-(1/2)^n)。

(2)若數(shù)列{cn}的通項(xiàng)公式為cn=n^2-n+1,求第10項(xiàng)cn的值。

解:代入n=10,得cn=10^2-10+1=100-10+1=91。

五、證明題(每題10分,共10分)

17.證明:若a、b、c是等差數(shù)列的連續(xù)三項(xiàng),那么a^2+b^2+c^2=3bc。

證明:由等差數(shù)列的性質(zhì),有b=a+d,c=a+2d。將b和c代入a^2+b^2+c^2,得a^2+(a+d)^2+(a+2d)^2=3(a+d)(a+2d)。

六、綜合題(每題20分,共20分)

18.已知函數(shù)f(x)=x^3-6x^2+11x-6,求:

(1)函數(shù)f(x)的單調(diào)區(qū)間;

(2)函數(shù)f(x)的極值點(diǎn);

(3)函數(shù)f(x)的零點(diǎn)。

解:(1)求導(dǎo)得f'(x)=3x^2-12x+11。令f'(x)=0,得x=1或x=11/3。通過判斷f'(x)的符號,可得f(x)在(-∞,1)和(11/3,+∞)上單調(diào)遞增,在(1,11/3)上單調(diào)遞減。

(2)極值點(diǎn)出現(xiàn)在f'(x)=0的位置,即x=1或x=11/3。計(jì)算f(1)=0,f(11/3)=0,因此極值點(diǎn)為x=1和x=11/3。

(3)由于f(x)是一個(gè)三次多項(xiàng)式,且f(1)=0,f(2)=0,f(3)=0,因此f(x)的零點(diǎn)為x=1,x=2,x=3。

試卷答案如下:

一、選擇題(每題5分,共30分)

1.B.3

解析思路:代入x=2,計(jì)算f(2)=(2-1)^2+2=1+2=3。

2.A.(3,2)

解析思路:點(diǎn)A(2,3)關(guān)于直線y=x的對稱點(diǎn)坐標(biāo)交換x和y,得(3,2)。

3.C.4

解析思路:根據(jù)對數(shù)定義,2^1=3x-2,解得x=4。

4.A.29

解析思路:等差數(shù)列第n項(xiàng)公式an=a1+(n-1)d,代入a1=2,d=3,n=10,得an=2+9*3=29。

5.A.24

解析思路:等比數(shù)列第n項(xiàng)公式an=b1*q^(n-1),代入b1=3,q=2,n=4,得an=3*2^(4-1)=3*8=24。

二、填空題(每題5分,共20分)

6.5

解析思路:代入x=2,計(jì)算f(2)=(2-1)^2+2=1+2=5。

7.(3,2)

解析思路:點(diǎn)A(3,4)關(guān)于直線y=-x的對稱點(diǎn)坐標(biāo)交換x和y,得(2,3)。

8.1

解析思路:根據(jù)對數(shù)定義,5^1=2x+1,解得x=1。

9.29

解析思路:等差數(shù)列第n項(xiàng)公式an=a1+(n-1)d,代入a1=5,d=-2,n=10,得an=5+9*(-2)=5-18=-13。

10.3

解析思路:等比數(shù)列第n項(xiàng)公式an=b1*q^(n-1),代入b1=4,q=1/2,n=4,得an=4*(1/2)^(4-1)=4*(1/2)^3=4*1/8=1/2。

三、解答題(每題10分,共30分)

11.(1)極值點(diǎn)為x=1,極小值為f(1)=0。

解析思路:求導(dǎo)得f'(x)=3x^2-6x+4,令f'(x)=0,得x=1或x=2/3。通過判斷f'(x)的符號,可得f(x)在(-∞,2/3)和(1,+∞)上單調(diào)遞增,在(2/3,1)上單調(diào)遞減。因此x=1是極小值點(diǎn),f(1)=0。

(2)零點(diǎn)為x=1,x=2,x=3。

解析思路:由于f(x)是一個(gè)三次多項(xiàng)式,且f(1)=0,f(2)=0,f(3)=0,因此f(x)的零點(diǎn)為x=1,x=2,x=3。

12.(1)中點(diǎn)坐標(biāo)為(7/2,5/2)。

解析思路:線段AB的中點(diǎn)坐標(biāo)為((x1+x2)/2,(y1+y2)/2),代入A(2,3)和B(5,6),得中點(diǎn)坐標(biāo)為((2+5)/2,(3+6)/2)=(7/2,5/2)。

(2)交點(diǎn)坐標(biāo)為(-3,0)。

解析思路:令y=0,代入直線l的方程2x-3y+6=0,得2x+6=0,解得x=-3,因此交點(diǎn)坐標(biāo)為(-3,0)。

13.(1)x=7。

解析思路:根據(jù)對數(shù)定義,2^3=3x+1,解得x=7。

(2)an=29。

解析思路:等差數(shù)列第n項(xiàng)公式an=a1+(n-1)d,代入a1=2,d=3,n=10,得an=2+9*3=29。

四、解答題(每題10分,共30分)

14.(1)證明:已知三角形ABC的邊長分別為a、b、c,且滿足a^2+b^2=c^2,求證:三角形ABC是直角三角形。

證明:由勾股定理,若a^2+b^2=c^2,則三角形ABC滿足直角三角形的條件,因此三角形ABC是直角三角形。

(2)Sn=n^2。

解析思路:等差數(shù)列的前n項(xiàng)和公式為Sn=n/2*(a1+an),其中an=a1+(n-1)d。代入a1=1,d=2,得Sn=n/2*(1+1+2(n-1))=n/2*(2+2n-2)=n^2。

15.(1)k=1。

解析思路:將點(diǎn)P的坐標(biāo)代入直線l的方程,得3=2k+1,解得k=1。

(2)最大值和最小值都是0。

解析思路:函數(shù)h(x)在區(qū)間[1,3]上的最大值和最小值出現(xiàn)在端點(diǎn)或極值點(diǎn)。計(jì)算h(1)=1^2-4*1+3=0,h(3)=3^2-4*3+3=0,因此最大值和最小值都是0。

16.(1)Sn=8*(1-(1/2)^n)。

解析思路:等比數(shù)列的前n項(xiàng)和公式為Sn=b1*(1-q^n)/(1-q)。代入b1=4,q=1/2,得Sn=4*(1-(1/2)^n)/(1-1/2)=8*(1-(1/2)^n)。

(2)cn=91。

解析思路:代入n=10,得cn=10^2-10+1=100-10+1=91。

五、證明題(每題10分,共10分)

17.證明:若a、b、c是等差數(shù)列的連續(xù)三項(xiàng),那么a^2+b^2+c^2=3bc。

證明:由等差數(shù)列的性質(zhì),有b=a+d,c=a+2d。將b和c代入a^2+b^2+c^2,得a^2+(a+d)^2+(a+2d)^2=3(a+d)(a+2d)。

六、綜合題(每題20分,共20分)

18.(1)單調(diào)遞增區(qū)間為(-∞,2/3)和(1,+∞),單調(diào)遞減區(qū)間為(2/3,1)。

解析思路:求導(dǎo)得f'(x)=3x^2-6x+11,令f'(x)=0,得x=1或x=11/3。通過判斷

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論