版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
3 5 22在函數(shù)上某點的切線方程:函數(shù)y=f(x)在點A(x0O,f(x0))處的切線方程為y-f(x0)=f/EQ\*jc3\*hps20\o\al(\s\up6(y),k)EQ\*jc3\*hps14\o\al(\s\up6(x0),x0)0)為:y-y0=f/(x0)(x-x0),又因為切(x01.(24-25江蘇蘇州·期末)已知函數(shù)f(x(=ax2+(a-2(x-lnx.(2)若f(x(的圖象與直線y=kx-1切于點,Of,求k的值.(1)0(2)k=3(1)f(x(的定義域為{x|x>0{,當(dāng)a=1時,f(x(=x2-x-lnx,f/(x(==,令f/(x(=0,得x=1,11當(dāng)0<x<1時,f/(x(<0,f(x(在(0,1(上單調(diào)遞減;當(dāng)x>1時,f/(x(>0,f(x(在(1,O+∞(單調(diào)遞增,所以f(x(在x=1處取得極小值,極小值為f(1(=0;消去k得-2+ln=0,令g(x(=-2+ln,易知g(x(在(0,O+∞(上單調(diào)遞增,將a=2代入a2+(a-2(-=k,得k=3.所以k=3.2.(24-25江蘇無錫·期末)已知函數(shù)f(x(=x(x-c)2.(1)若f(x(在x=2處有極小值,求f(x(的單調(diào)遞增區(qū)間;(2)若函數(shù)y=f(x(的圖象與直線y=-x+c相切,求實數(shù)c的值.(1)(2,+∞((2)±2(1)由題意可知:f/(x(=(x-c)2+2(x-c(.x=(x-c((3x-c(,因為f(x(在x=2處有極小值,則f/(2(=(2-c((6-c(=0,解得c=2或6,/(x(=(x-2((3x-2(,令f/(x(>0,解得x<或x>2;令f/(x(<0,解得<x<2;可知f(x(在x=2處有極小值,符合題意;/(x(=(x-6((3x-6(,令f/(x(>0,解得x<2或x>6;令f/(x(<0,解得2<x<6;可知f(x(在(-∞,2(,(6,+∞(上單調(diào)遞增,在(2,6(上單調(diào)遞減,可知f(x(在x=2處有極大值,不符合題意;綜上所述:c=2,f(x(的單調(diào)增區(qū)間為(2,+∞(./(x(=(x-c((3x-c(,設(shè)f(x(與y=-x+c切于P(x0,x0(x0-c(2(,則切線斜率k=f/(x0(=(x0-c((3x0-c(,可得切線方程為y=(x0-c((3x0-c((x-x0(+x0(x0-c(2=(x0-c((3x0-c(x-2xEQ\*jc3\*hps12\o\al(\s\up3(2),0)(x0-c(,EQ\*jc3\*hps15\o\al(\s\up6(x0),2)EQ\*jc3\*hps21\o\al(\s\up6(x),c)=-1,顯然x0≠c,22整理可得(2x0-c((x0-c(=0,解得,代入(x0-c((3x0-c(=-1可得所以c=±2.3.(24-25山東濰坊·期末)已知函數(shù)f(x(=ex(x2+ax+1(.(1)當(dāng)a=0時,求曲線y=f(x(在點(1,f(1((處的切線方程;(1)4ex-y-2e=0(1)當(dāng)a=0時,函數(shù)f(x(=(x2+1(ex,得f/(x(=(x2+1(ex+2xex=ex(x+1(2,所以f/(1(=4e,f(1(=2e,所以曲線y=f(x(在點(1,f(1((處的切線方程為y-2e=4e(x-1(,即切線方程為4ex-y-2e=0;(2)當(dāng)a≠0時,f(x(=ex(x2+ax+1(,f/(x(=ex(x+1((x+a+1(,令f/(x(=0,得x=-1,x=-1-a,當(dāng)a>0時,-1>-1-a,令f/(x(>0,得x>-1或x<-1-a,令f/(x(<0,得-1-a<x<-1,33所以函數(shù)f(x(的單調(diào)增區(qū)間為(-∞,-1-a(和(-1,+∞(,單調(diào)減區(qū)間為(-1-a,-1(當(dāng)a<0時,-1<-1-a,令f/(x(>0,得x>-1-a或x<-1,令f/(x(<0,得-1<x<-1-a,所以函數(shù)f(x(的單調(diào)增區(qū)間為(-1-a,+∞(和(-∞,-1(,單調(diào)減區(qū)間為(-1,-1-a(;綜上所述,當(dāng)a>0時,f(x(的單調(diào)增區(qū)間為(-∞,-1-a(和(-1,+∞(,單調(diào)減區(qū)間為(-1-a,-1(;當(dāng)a<0時,f(x(的單調(diào)增區(qū)間為(-1-a,+∞(和(-∞,-1(,單調(diào)減區(qū)間為(-1,-1-a(.(2)討論函數(shù)f(x(的單調(diào)性. 令g(x(=ax2+2(a-1(x+a,x∈(0,+∞(,f/(x(<0,所以f(x(在(0,+∞(上單調(diào)遞減;2(a-1(x+a=0的根為x1=,x2=,由于(1-a(2-(1-2a(=a2>0,1-a>0,1-2a>0,∴1-a>、1-2a,即x1>0,x2>0,f/f(x(在和上單調(diào)遞增;44綜上,當(dāng)a≤0時,f(x(在(0,+∞(上單調(diào)遞減;當(dāng)0<a<時,f(x(在(0,和,+∞(上單調(diào)遞增,當(dāng)a≥時,f(x(在(0,+∞(上單調(diào)遞增;(1)當(dāng)a=2時,求曲線y=f(x(在點(1,f(1((處的切線方程;(2)若函數(shù)f(x(有極小值,且f(x(的極小值小于1-a2,求實數(shù)a的取值范圍.(1)x+y-1=0.(2)(0,1(.所以f(1(=0,.所以在(1,f(1((切線f/(1(=-1,所以切線方程為y=-(x-1(,即x+y-1=0.則f/(x(=-=,①當(dāng)a≤0時,f/(x(>0恒成立,此時函數(shù)f(x(在(0,+∞(上單調(diào)遞增,無極小值,x(0,a(a(a,+∞(f/(x(-0+f(x(所以f(x)極小值=f(a(=lna+1-a,由題意可得lna+1-a<1-a2,即a2+lna-a<0,令g(a(=a2+lna-a(a>0(,則g(1(=0.因為g/(a(=2a+-1=>0,所以函數(shù)g(a(在(0,+∞(單調(diào)遞增,所以由g(a(<g(1(=0,得0<a<1,55(2)若x=x0是f(x(的極小值點,證明:f(x0(<-e.可;結(jié)論.所以y=f(x(在點(1,0)處的切線為y=ea(x-1),(x)>0,0≠,故f(x0)<-e得證.66(3)(-∞,0(.則f/(0(=e0-3=-2,又f(0(=e0-0=1.故曲線y=f(x(在(0,f(0((處的切線方程為2x+y-1=0.F/(x(=(x+1(ex-ax2-ax=(x+1((ex-ax(,設(shè)m(x(=ex-ax,x∈(0,+∞(,則m/(x(=ex-a.故F(x(=xf(x(+ax2在(0,+∞(單調(diào)遞增,不存在最小值.當(dāng)x∈(-∞,0(時h/(x(=<0,所以h(x(=在(-∞,0(單調(diào)遞減77【分析】(1)根據(jù)條件求得f(0(與f/(0(,即可得到88x-2sinx,f'(x(=ex-2cosx,則f'(0(=e0-2cos0=-1,又f(0(=e0-2sin0=1,所以曲線y=f(x)在點(0,f(0((處的切線方程為x+y-1=0.(x(=,x0 π4π'(x(+0-g(x(49.(24-25山東淄博·期末)已知函數(shù)f(x(=alnx-x(a<2(,曲線y=f(x(在點(1,-1(處的切線與曲EQ\*jc3\*hps19\o\al(\s\up4(Γ),L)EQ\*jc3\*hps19\o\al(\s\up4(Γ),L)(i)求m和n的值;【詳解】(1)因為f(x(=alnx-x(a<2(,所以f'(x(=-1,f(1(=-1,所以f'(1(=a-1,所以曲線y=f(x(在點(1,-1(處的切線方程為y+1=(a-1((x-1(,設(shè)直線y+1=(a-1((x-1(與曲線y=x2+2x相切與點(x0,y0(,99EQ\*jc3\*hps15\o\al(\s\up3(2),0)EQ\*jc3\*hps18\o\al(\s\up4(Γ),L)(++1|EQ\*jc3\*hps18\o\al(\s\up4(Γ),L)(x+m(,由(1)f(x(=lnx-x,EQ\*jc3\*hps18\o\al(\s\up4(Γ),L)(++1|EQ\*jc3\*hps18\o\al(\s\up4(Γ),L)(x+m(=(x+m(ln,所以函數(shù)y=g(x(的定義域為(-∞,-4(∪(0,+∞(,所以n=-2,所以函數(shù)y=g(x-2(關(guān)于y軸對稱,故函數(shù)y=g(x-2(為偶函數(shù),所以g(-2-x(=g(-2+x(,故g(t(=g(-4-t(所以(t+m(ln=(-4-t+m(ln-,所以(t+m(ln=(4+t-m(ln,所以(4-2m(ln=0,函數(shù)y=g(x(的定義域為(-∞,-4(∪(0曲線y=g(x(關(guān)于直線x=-2對稱,要證明g(x(>4,所以函數(shù)h(t(=ln(1+t(+-2在(0,+∞(單調(diào)遞增,所以g(x(>4.(3)由題意轉(zhuǎn)化為xlna+ln(1-2x(≤0恒成立,令φ(x(=xlna+ln(1-2x(,按照0<a<1和a>1分類a(2)設(shè)點P(m,n(為函數(shù)f(x(的對稱中心,則f(x(+f(2m-x(=2n,所以ax+ka-x+a2m-x+ka-2m+x=2n,即ax(1+ka-2m(+a-x(k+a2m(=2n,所以a2x(1+ka-2m(-2nax+(k+a2m(=0,2m=-k,n=0,當(dāng)k<0時,m=loga(-k(,此時函數(shù)f(x(圖象的對稱中心為Ploga(-k(,0(.x≤在上恒成立,即xlna+ln(1-2x(≤0.令φ(x(=xlna+ln(1-2x(,則φ(0(=0,所以令則所以(x(在上單調(diào)遞減,2x(<0,則φ(x(單調(diào)遞減;時,->0,≥g(x(恒成立,將問題轉(zhuǎn)化成證明g(x(≥2lnx+2,再利用導(dǎo)數(shù)分段求證g(x(-2lnx-2≥0成立即可得證.【詳解】(1)x=4時,f(x(=2ea+4e-a+ea-e-a=ea+3e-a.令h(a(=0<x≤3.x≥3(3)由第(2)問可知f(x(≥g(x(恒成立,所以只需證明g(x(≥2lnx+2即可.①若x∈[1,3[,構(gòu)造u(x(=3x--2lnx-2u/(x(=+-=(3x-4x+1(=(3x-1((x-1(x(≥0在[1,3[上恒成立,u(x(在[1,3[上單調(diào)遞增,所以u(x(≥u(1(=0,x即3x-1≥2lnx+2在[1,3[上恒成立;xEQ\*jc3\*hps21\o\al(\s\up5(1),x)構(gòu)造t(x(=22x--2lnx-2,則t/(x(= 2x=- 2x=-x- 2x-2x-xx-.令則所以φ(x(在[3,+∞(單調(diào)遞增,t(x(在[3,+∞(單調(diào)遞增,t(x(≥t(3(=3-2ln3-2.因為3<e>t(3(=3-2ln3-2>3--2>0,g(x(=22x-≥22x->2lnx+2,所以g(x(≥2lnx+2,而f(x(≥g(x(,即證f(x(≥2lnx+2在x∈[1,+∞(上恒成立.12.(24-25深圳市龍崗區(qū)·期末)已知函數(shù)f(x(=e(1)討論函數(shù)f(x(的單調(diào)性;EQ\*jc3\*hps13\o\al(\s\up8(1),2)EQ\*jc3\*hps13\o\al(\s\up8(1),3)【詳解】(1)f/(x(=ex-m,當(dāng)m≤0時,f/(x(>0,f(x(在(-∞,+∞(上單調(diào)遞增,當(dāng)x∈(-∞,lnm(時,f/(x(<0,f(x(在(-∞,lnm(上單調(diào)遞減,,f(x(在(lnm,+∞(上單調(diào)遞增.綜上,當(dāng)m≤0時,f(x(在(-∞,+∞(上單調(diào)遞增;當(dāng)m>0時,f(x(在(-∞,lnm(上單調(diào)遞減,在(lnm,+∞(上單調(diào)遞增.EQ\*jc3\*hps13\o\al(\s\up8(1),2)EQ\*jc3\*hps13\o\al(\s\up8(1),3)x-ex≥ax3-x+2a恒成立,令h(x(=ex+(1-e(x-ax3-2a,則h(x(≥0在[0,+∞)恒成立,x+(1-e(x-ax3-2a≥ex+(1-e(x-x3-,+(1-e(-x2,令u(x(=ex+(1-e(-x2,則u/(x(=ex-2x,x-ex≥0,故u/(x(=ex-2x>ex-ex≥0,所以g/(x(在(0,+∞(上為增函數(shù),又g/(1(=0所以g(x(min=g(1(=0,x+(1-e(x-x3-≥0恒成立.x-ex≥ax3-x+2a恒成立,令h(x(=ex+(1-e(x-ax3-2a,則h(x(≥0在[0,+∞)恒成立,x+(1-e(x-ax3-2a≥ex+(1-e(x-x3-,只要證明ex+(1-e(x-x3-≥0即可.則g(x(min=g(1(=0,h/(x(=[ex-(e-1([(x3+2(-3x2[ex-(e=ex(x3-3x2+2(+(e-1((2x3-2(= (x-1([ex(x2-2x-2(+(e-1((2x2+2x+2([=ex(x2-4((x2+x+1(-ex(x2-2x故g(x(min=g(1(=e-2>0,令h/(x(=0明;(3)小問,由f(x(≥ax3-x+2a恒成立構(gòu)造函數(shù)h(x(=ex+(1-e(x-ax3-2a,則h(x(≥0在[0,(1)討論函數(shù)f(x(零點的個數(shù);xx(<0,g(x(單調(diào)遞減;x(>0,g(x(單調(diào)遞增;當(dāng)a=-時,函數(shù)f(x(有2個零點;當(dāng)a<-時,函數(shù)f(x(有3個零點.因為f/(x(-3ax≥b,則ex-ax-b≥0,令h(x(=ex-ax-b,則h/(x(=ex-a,x與y=-ax-b的性質(zhì)可知,x→0,y=-ax-b→-∞,所以h(x(=ex-ax-b≥0不恒成立,不符合題意;,此時h(x(單調(diào)遞減,所以h(x(≥h(lna(=a-alna-b≥0,即b≤a-alna,所以ab≤a2-a2lna,令φ(x(=x2-x2lnx,x>0,則φ/(x(=x-2xlnx=x(1-2lnx(, 數(shù)形結(jié)合的方法求解.14.(24-25江蘇常州·期末)已知函數(shù)f(x)=xlnx.(2)若函數(shù)g(x)=f(x)-bx2有兩個不同的零點.(ii)若(xlnx-bx2((x2-cx+d(≤0恒成立,求證:數(shù)證明不等式.而f(x)在區(qū)間(a,+∞)上單調(diào),所以a≥;(2)(i)g(x(=xlnx-bx2=x(lnx-bx(,且x∈(0,+∞(,令h(x(=lnx-bx且x∈(0,+∞(,則h/(x(=-b, 又h(1(=-b<0,h=-2lnb-,(ⅱ)記兩個零點為x1,x2(0<x1<x2(,結(jié)合g(x((x2-cx+d(≤0恒成立,令m=<1,則n(m(=2lnm-m+,則nI(m(=-1-1-2<0,證不等式為關(guān)鍵.2、通過等價變形,可將“函數(shù)F(x)=f(x)-g(x)的零點”與“方程f(x)=g(x)的解”問題相互轉(zhuǎn)化。(1)若f(x(≤g(x(恒成立,求a的取值范圍;【分析】(1)不等式等價于a≥lnx-x,利用導(dǎo)數(shù)求得h(x(=lnx-x的最大值即可得到a的取值范圍.(2)令F(x(=af(x+1(-g(x(=a(x+1(ln(x+1(-x2-ax,則FI(x(=aln(x+1(-2x,令m(x(=x(=0得x=-1,結(jié)合m(x(的單調(diào)性,可得F(x(max=F-1(=aln-a+2,令G(a(解的個數(shù).【詳解】(1)由題f(x(的定義域為(0,+∞(,f(x(≤g(x(即xlnx≤x2+ax,即a≥lnx-x恒成立,令h(x(=lnx-x,則h/(x(=-1,故h(x(在(0,+∞(上有最大值h(1(=-1,所以a≥-1,即a的取值范圍是[-1,+∞(.令F(x(=a(x+1(ln(x+1(-x2-ax,(x>-1(,則F/(x(=aln(x+1(-2x,令m(x(=aln(x+1(-2x,則①當(dāng)a≤0時m/(x(<0,m(x(在(-1,+∞(上單調(diào)遞減,即F/(x(在(-1,+∞(上單調(diào)遞減,-1,0(時F/(x(>0,F(xiàn)(x(單調(diào)遞增;當(dāng)x∈(0,+∞(時F/(x(<0,F(xiàn)(x(單調(diào)遞故F(x(在x=0處取得最大值,即F(x(max=F(0(=0,所以F(x(只有一個零點,即原方程只有一個解;0解得x=-1,當(dāng)-1<x<-1時m/(x(>0,m(x(在(-1,-1(上單調(diào)遞增,即F/(x(在(-1,-1(上單調(diào)遞增;當(dāng)x>-1時m/(x(<0,m(x(在-1,+∞(上單調(diào)遞減,即F/(x(在-1,+∞(上單調(diào)遞減,所以F(x(在x=-1處取得最大值,即F(x(max=F-1(=aln-2-1(=aln-a+2,所以F(x(在(-1,+∞(上單調(diào)遞增,又F(0(=0,所以F(x(只有一個零點,即原方程只有一個解.(1)已知函數(shù)f(x(的圖象關(guān)于點P(m,n(成中心對稱圖形的充要條件是函數(shù)y=f(x+m(-n是奇函【分析】(1)由y=f(x+m(-n是奇函數(shù),則f(-x+m(-n+[f(x+m(-n[=0,然后求解即可;g(x(=x3+3x2-kx-b有3個不相等零點x1,x2,x3,從而得到g(x(=x3+3x2+(2-b(x-b,然后利用導(dǎo)數(shù)【詳解】(1)f(x(關(guān)于(m,n(對稱,令g(x(=f(x+m(-n,則g(-x(=-g(x(,即f(-x+m(-n+[f(x+m(-n[=0,3(m+x)2+(m-x)3+3(m-x)2=2n,化簡得(3m+3(x2+(m3+3m2-n(=0,得m=-1,n=2,得對稱中心坐標(biāo)為(-1,2(;若l:y=kx+b與f(x(圖像交于A(x1,y1(,B(x2,y2(,C(x3,y3(,即g(x(=x3+3x2-kx-b有3個不相等零點x1,x2,x3,由于x3+ax2-kx-b=0=(x-x1((x-x2((x-x3(得x3-(x1+x2+x3(x2+(x1x2+x2x3+x1x3(x-x1x2x3=x3+ax2-kx-b,所以x1+x2+x3=-3,即g(x(=x3+3x2+(2-b(x-b,(i)當(dāng)Δ=12(b+1(≤0,即b≤-1時函數(shù)g(x(在R上單調(diào)遞增,令g/(x(>0(-1-3+3b,-1+3+3b(,得函數(shù)g(x(在(-∞,-1-3+3b(遞增,(-綜上可得,b>-1符合題意,即b>-1為g(x(在R上存在三個零點的必要條件得必要性成立;17.(24-25山東濱州·期末)設(shè)函數(shù)y=f(x(的定義域為D,其導(dǎo)函數(shù)為f/(x(,區(qū)間I是D的一個非空子稱函數(shù)y=f(x(為區(qū)間I上的“M(t(函數(shù)”.(2)若函數(shù)g(x(=x2-ax是[0,2[上的“M(2(函數(shù)”.(ⅱ)證明:?x∈[1,2[,g(x+2( 3(2x-4(≥6(lnx-1(,即證x-1-lnx≥0,構(gòu)造函數(shù)G(x(=x-1-lnx,利用導(dǎo)數(shù)分析函數(shù)G(x(在區(qū)【詳解】(1)因為f(x(=cosx,則f/(x(=-sinx,因為f(x+=cos(x+=-sinx+1(.f/(x(+1(.sinx.所以f(x+≥+1(f/(x(對于任意x∈[0,π[恒成立.故f(x(=cosx是[0,π[上的“M函數(shù)”.(2)(i)g/(x(=2x-a,由條件得(x+2(2-a(x+2(≥3(2x-a(對任意的x∈[0,2[恒成立,即a(x-1(≤(x-1(2+3任意的x∈[0,2[恒成立.所以F(x(在[0,1(上單調(diào)遞減,可得a≥F(x(max=F(0(=-4.設(shè)F(x(=x-1+-,則F/(x(=1--<0,所以F(x(在(1,2[上單調(diào)遞減,可得a≤F(x(min=F(2(=4.對?x∈[1,2[,g(x+2(≥3g/(x(=3(2x-a(≥3(2x-4(.-1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省綿陽市梓潼縣2026屆九年級上學(xué)期1月期末考試物理試卷答案
- 衛(wèi)生檢查題目及答案
- 網(wǎng)格員考試題及答案
- 六年級樂趣作文300字4篇
- 二十屆四中全會考試測試卷及答案
- 電纜敷設(shè)施工技術(shù)要領(lǐng)
- 2026屆山東省淄博市高三上學(xué)期期末考試(摸底質(zhì)量檢測)歷史試題(含答案)
- 社群運(yùn)營管理實操考試題及答案
- 社會實踐考試試題及答案
- 青霉素過敏考試題及答案
- 2025南航機(jī)械復(fù)試試題及答案
- 急性胰腺炎診療指南解讀2025
- 遼寧省建筑施工安全生產(chǎn)標(biāo)準(zhǔn)化考評實施細(xì)則
- 電站火災(zāi)事故應(yīng)急預(yù)案
- GJB827B--2020軍事設(shè)施建設(shè)費(fèi)用定額
- 娃娃菜栽培技術(shù)
- 工業(yè)鍋爐司爐課件
- 數(shù)字營銷專業(yè)人才培養(yǎng)方案
- 新疆概算管理辦法
- 女性中醫(yī)健康養(yǎng)生講座
- 《養(yǎng)老服務(wù)政策法規(guī)與標(biāo)準(zhǔn)》智慧健康養(yǎng)老服務(wù)專業(yè)全套教學(xué)課件
評論
0/150
提交評論