版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
November2024
ForecastingGlobalOilDemand:
ApplicationofMachineLearningTechniques
AhmadM.Aldabbagh,VisitingResearchFellowOIES
OIESPaper
AndreasEconomou,HeadofOilResearchOIESCharitonChristou,ResearchAssociateOIES
2
Abstract
Thisstudyintroducesanovelapproachtopredictingglobaloildemandbyintegratingmachinelearning(ML)techniquestoforecastconsumptionacrosssevenrefinedoilproductsandsevenkeyregions.Byaggregatingtheseforecasts,weofferacomprehensiveviewofglobaldemandtrends.ThepaperexaminestheefficacyofMLmodelsinprovidingrobustandaccuratedemandforecasts.Italsoprovidesatransparentandrepeatableprocesstoforecastoildemand.Acomparisonbetweentheextremegradientboosting(XGBoost)modelandNeuralHierarchicalInterpolationforTimeSeriesForecasting(N-HiTS)modelwasconductedtodeterminewhichisamoreaccuratemodeltoforecastdemand.OurcomparativeanalysisdemonstratesthatN-HiTSperformsbetter.Theaccuracyofglobaloildemandforecastsispivotalforeconomicplanningandpolicymaking.
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
1.Introduction
Accurateforecastingofoildemandiscriticalforstrategicplanning.Traditionaleconometricmodels,whileuseful,oftenstruggletocapturethecomplexdynamicsinfluencedbynumerouseconomicindicatorsandgeopoliticalfactors.Thesemodelstypicallyrelyonlinearassumptionsandmaynotadequatelyaddressthenon-linearrelationshipsinherentinoilmarkets.Toaddressthesechallenges,ourpaperintroducesamethodologythatleveragesadvancedmachinelearning(ML)techniques,specificallyextremegradientboosting(XGBoost)andNeuralHierarchicalInterpolationforTimeSeriesForecasting(N-HiTS),toenhancetheprecisionandreliabilityofoildemandforecasts.
Machinelearningmodelshavedemonstratedsuperiorperformanceinvariousforecastingtasksduetotheirabilitytohandlelargedatasetsanduncoverintricatepatterns.RecentstudiesconsistentlyshowthatMLtechniquesoutperformtraditionaleconometricmethodsintimeseriesforecastingbymodellingcomplex,nonlinearrelationshipsandhandlinglargedatasets.Forinstance,Hopp(2022)1foundthatlongshort-termmemory(LSTM)neuralnetworksprovidedbetterpredictiveaccuracythanBayesianvectorautoregressions(BVAR)fornowcastingUSquarterlyGDPgrowth,especiallyduringeconomiccrises.Deb(2019)2highlightedthatmodelsexploitingheterogeneity,suchasfinitemixturemodels,yieldedmoreaccuratehealthcarespendingforecastscomparedtogeneralizedlinearmodelsandlog-linearregression.Similarly,Lukongetal.(2022)3showedthatlongshort-termmemoryrecurrentneuralnetworks(LSTM-RNN)modelsachievedsignificantlylowermeanabsolutepercentageerror(MAPE)inlong-termelectricityloadforecastingthanlinearregressionmodels.Infinancialtimeseriesforecasting,Liuetal.(2023)4reportedthatensemblemethodslikeRandomForestandLSTMoutperformedtraditionaleconometricmodelsinbothaccuracyandinterpretability.Additionally,Kontopoulouetal.(2023)5reviewedvariousapplicationsandconcludedthatMLalgorithmsgenerallysurpassedautoregressiveintegratedmovingaverage(ARIMA)models,particularlyincapturingintricatedatapatterns,withhybridmodelsprovingmosteffective.Furthermore,comparativeanalysesbyOukhouyaandElHimdi(2023)6alsoillustratethesuperiorperformanceofsupportvectorregression(SVR),XGBoost,LSTM,andmultilayerperceptron(MLP)instockmarketforecasting,withMLmodelsgenerallyoutperformingtheireconometriccounterparts.ThissuperiorityisattributedtoMLmodels'abilitytolearnfromdatawithoutrelyingonpre-definedassumptions,allowingthemtocapturemorenuancedandcomplexrelationships.Thesefindingsunderscoretheenhancedaccuracy,efficiency,andflexibilityofMLmodelsintimeseriesforecastingacrossdiversedomains.
Inthecontextofoildemandforecasting,theintegrationofMLtechniqueshasshownsignificantimprovementsovertraditionalmethods.StudiesbyZhu(2023)7andAlkhammashetal.(2022)8havevalidatedtheeffectivenessofMLmodelsinthisdomain,demonstratingtheirsuperiorperformanceincapturingcomplexpatternsindata.Zhu(2023)conductedanAI-basedanalysisincorporatingbothendogenousandexogenousfactors,findingthatmachinelearningmodelssignificantlyimproveforecastingaccuracycomparedtotraditionalmodels.Similarly,Alkhammashetal.(2022)usedoptimizedmultivariateadaptiveregressionsplines(LR-MARS)topredictcrudeoildemandinSaudiArabia,showcasingtheadaptabilityandprecisionofMLmodelsindynamicenvironments.
XGBoost9,agradientboostingalgorithm,isknownforitsrobustnessandefficiency.Ithasbeensuccessfullyappliedindomainssuchastemperatureforecastingandprecipitationprediction,highlightingitsversatilityandeffectivenessacrossdifferentpredictivetasks.Forinstance,SinghandRawat(2023)10conductedacomparativeanalysisofXGBoostwithotherMLmodelslikesupportvectormachine(SVM)andRandomForestintemperatureforecasting,emphasizingtheimportanceofmodelselectionbasedonspecifictaskrequirements.Similarly,Dongetal.(2023)11utilizedXGBoostforshort-termprecipitationforecasting,demonstratingitscapabilitytoenhanceforecastaccuracybycorrectingbiasesinnumericalweatherpredictions.Inthecontextofoildemandforecasting,XGBoost'scapabilitytocapturecomplexinteractionsbetweenvariablesmakesitapromisingtool.ResearchbyDezhkamandManzuri(2023)12demonstratedtheefficacyofcombiningXGBoostwiththeHilbert-HuangTransformforstockmarketforecasting,adomainwithanalogouscomplexitytooilmarkets.
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
3
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
4
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
Similarly,theN-HiTSmodel13,aneuralnetwork-basedapproach,hasshownremarkableeffectivenessintimeseriesforecasting.Thismodelleverageshierarchicalinterpolationandhasbeenrecognizedforitsabilitytohandlenon-lineartimeseriesdataefficiently.StudieslikethosebySouzaetal.(2023)14haveemployedN-HiTStopredictCOVID-19casesanddeaths,showcasingitspotentialinhandlingnon-lineartimeseriesdata.TheN-HiTSmodel'sarchitectureallowsittoadapttodifferentscalesofdata,makingitsuitableforvariousforecastinghorizons.Althoughrelativelynew,N-HiTSpromiseshighaccuracy,particularlyforlong-termforecasts,whicharecrucialforstrategicenergyplanning.Itsabilitytodynamicallyadjustandlearnfromnewdatapointsensuresthattheforecastsremainrelevantandaccurateovertime.
Thispaperemploysatop-downapproach,usingeconomicandotherindustry-specificindicatorsasinputstoforecastglobaldemandacrossdifferentrefinedoilproductsinsevenglobalregions.Theseregionsarestrategicallychosentorepresentthemajoroil-consumingandproducingareas,ensuringacomprehensiveanalysis.Theforecastsarethenaggregatedtoformacomprehensiveglobalviewonoildemand.TheperformanceoftheMLmodels,specificallyXGBoostandN-HiTS,isassessedusingmetricssuchasMeanAbsolutePercentageError(MAPE)andMeanSquaredError(MSE),targetingahighaccuracywithaMAPEaround10%forforecastsextendingoneyearout-of-sample.Thesemetricsarecriticalforevaluatingthemodels'predictiveperformanceandensuringthattheforecastsarebothreliableandactionable.
Ourmethodologydemonstratesitsapplicationinthreeways:asashort-termforecastingtool(usingmonthlyinputsandforecastingupto24monthsahead),asamedium-termforecastingtool(usingquarterlyinputsandforecastingupto5yearsahead),andasaforecastscenariosanalysistool.Theseapplicationshighlighttheversatilityofourapproachanditspotentialtoinformstrategicdecisionsacrossdifferentplanninghorizons.
ByleveragingthesuccessesofMLinvariousdomains,thisstudyseekstosetanewbenchmarkinoildemandforecasting.Theultimategoalistoenhancethestrategicplanningcapabilitiesoftheenergyindustry,offeringmoreaccurateandtimelyforecaststoinformstrategicdecisions.TheresearchhighlightstheadvantagesofMLinidentifyingcomplexpatternsandadaptingtonewdata,makingitparticularlysuitableforthevolatileenergysector.
Theremainderofthepaperisorganizedasfollows.InSection2wereviewthedataprocessingstageprovidingthedatadescriptionandelaboratingonthemethodologiesemployedfordatacleaning,datatransformationanddatasplitting.Section3presentsthemethodologyandframeworkintermsoftheapproachusedformodelselectionandtraining.Section4demonstratestheapplicationofourmethodologyinconstructingshort-termandmedium-termforecastsofglobaloildemandandexaminescomparativelyinformationagainstactualsandconsensusforecasts.InSection5,wedemonstratehowtheseforecastscanbesupplementedwithvariousscenarios.Theseforecastscenarios,forexample,canillustratethesensitivityofthebaselineforecaststochangesinassumptionsabouttheglobalmacroeconomy,theadoptionofnewtechnologies,andevolvingpatternsofoilconsumption.Section6drawstheconclusionsanddiscussesareasforfutureresearch.
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
5
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
2.Dataprocessing
Thedataprocessingstageisinstrumentalintransformingrawdataintoaformatthatisamenabletoeffectivemodelling.Thisprocessencompassesseveralcriticalsteps:datacleaning,datatransformation,anddatasplitting.Eachstepismeticulouslydesignedtoaddressspecificchallengesinherentintimeseriesforecasting,suchashandlingmissingvalues,ensuringdatastationarity,andoptimizingthedatasetfortrainingandvalidationpurposes.Moreover,thesameapproachisfollowedwhetheritisappliedforshort-termormid-termforecastwithsomeminordifferencesthatarehighlighted.Thissectionelaboratesonthemethodologiesemployedinpreparingthedataset,emphasizingthetechnicalstrategiesandtheirtheoreticalunderpinningstoensurethehighestdataqualityforsubsequentmodelling.
Table1.Globaloildemandforecastingmodeldatastructure
Geography
Regions/Countries
OECD
US
OtherAmericas
Europe
APAC
Non-OECD
China
India
Othernon-OECD
Description
UnitedStates
IncludesotherOECDAmericas,namely,Canada,ChileandMexico.
IncludesOECDEurope,namely,Austria,CzechRepublic,Denmark,Estonia,France,Germany,Greece,Hungary,Italy,theNetherlands,Norway,Poland,Portugal,Slovakia,Slovenia,Spain,Sweden,TurkeyandtheUK.
IncludesOECDAsia-Oceania,namely,Australia,Israel,Japan,KoreaandNewZealand.
China.
India.
Includesrestofworld.
Oilproducts
Oilproduct
Description
LPG(d1)
Includesallliquefiedpetroleumgases.
Naphtha(d2)
Includesnaphthaasfeedstocktothepetrochemicalindustryandforgasolineproduction.Excludesnaphthatypejetfuel.
Gasoline(d3)
Includesfinishedmotorgasolineandmotorgasolineblendingcomponentsandadditives.
Jet/Kero(d4)
Includeskerosene-typejetfuelandotherkerosene.
Gasoil/Diesel(d5)
Includesdieseloil,lightheatingoilandothergasoils.
Fueloil(d6)
Includesallresidualfueloils.
Otherproducts(d7)
Includesotheroilproducts,suchascrudeoil,otherNGL,syntheticcrude/fuels,orimulsion,hydrogen,refinerygas,aviationgasoline,naphtha-typejetfuel,whitespirit,SBP,lubricants,bitumen,paraffinwaxes,petroleumcoke,tar,sulphur,aromaticsandolefin.
Source:IEAMODS,OIES
6
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
2.1.Datadescription
OurglobaloildemandforecastingmodelsdisaggregateglobaloildemandintoOECDandnon-OECDregions,aswellassevenprimaryoilproducts,namely:LPG(d1),naphtha(d2),gasoline(d3),jet/kero(d4),gasoil/diesel(d5),fueloil(d6),andotherproducts(d7).DemandforoilproductsinOECDisfurtherdisaggregatedintotheUS,OtherAmericas,EuropeandAsia-Oceania(APAC).Demandforoilproductsinthenon-OECDisfurtherdisaggregatedintoChina,Indiaandothernon-OECD.OECDdataarebasedontheInternationalEnergyAgency’sMonthlyOilDataService(IEAMODS)database.Fornon-OECDdataweutilizevarioussourcessuchasIEA,Argus,China’sNationalBureauofStatistics(NBS),India’sPetroleumPlanningandAnalysisCell(PPAC),andotherindustrysources.ThesampleperiodspamsfromJanuary1990toJune2023forOECD,andfromJanuary2000toJune2023fornon-OECDcountries/regions.Alloildataaremonthly.Table1summarizesthedatastructureforthedependentvariables.
Theforecastingmodelsalsoutilizefourgroupsofindependentdeterminantscoveringglobalprices,globaleconomics,globalindustryandsector-specificindicators.ThesearesummarizedinTable2.ThemainsourceofdataisOxfordEconomics’GlobalDatabanks.Thesignificanceofthesepredictorsinforecastingglobaloildemandisanalyzedandevaluatedinthefollowingsections.
Table2.Descriptionofselectedglobaloildemandpredictors
Globalprices
rpo
Oilprice
Brentprice,periodaverage.
wci
Worldcommodityindex(non-fuel)
Averageofworldfoodprice,worldbeveragesprice,worldagriculturerawmaterialspriceandworldmetalsprice.
Globaleconomics
pop
Population
Totalpopulation.
gdp
GDP
GDP,inUSD$terms.
cpi
CPI
ConsumerPriceIndex:Allitems.
inc
Disposableincome
Personaldisposableincome.
wtr
Worldtradeindex
OxfordEconomics’globaltradeindex.
lkq
LiKeqiangindex
IndexmeasuringChina’seconomybasedonlyonrailfreightvolume,electricityproduction,andbankloans.
Globalindustry
ind
Industrialproduction
Manufacturingproductionindex.
ppi
PPI
Producerpriceindex.
inv
Totalinvestment
Totalfixedinvestment.
out
Grossoutput
Totalvalueadded.
pcars
Stockpersonalcars
Lightvehiclesforpersonaluse.
ccars
Stockcommercialcars
Lightandheavyvehiclesforcommercialuse.
cbui
Constructionofbuildings
Industrialproductioninconstructionofbuildings.
chem
Salesgrossoutput(chem)
OutputchemicalsminusPharmaceuticals.
egen
Electricitygenbyoil
Electricityproductionfromoilsources(%oftotal).
Airpassengerforecasts
airf
Airfaresindex
Averageairfaresindex.Samplestartsin1Q06.
airp
Airpassengers
Totalpassengers.Samplestartsin1Q06.
rpk
Revenuepassengerkm
Revenuepassengerkilometersinmillions.Samplestartsin1Q06.
Source:OxfordEconomics’GlobalDatabanks,OIES
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
7
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
2.2.Datacleaning
Ourshort-termdemanddataismonthlywhileeconomicindicatorsarequarterly.However,forthemid-termboththedemandandeconomicindicatordataisquarterlyanddonotrequireanyfrequencyconversion.Fortheshort-termforecast,anyquarterlydatamustbeconvertedtomonthlydatatoallowforamonthlyforecastinsteadofaquarterlyforecastfortheshort-term.Thefollowingsectionshighlighttherequiredstepspriortomodeltraining.
ConvertingQuarterlytoMonthlyData:Giventhediscrepancyinthetemporalresolutionofdemanddata(monthly)versusotherindicators(quarterly),itwasimperativetohomogenizethedatasettoamonthlyscaletomaximizeobservationaldatapointsforanalysis.Toachievethis,thePandas15library'slinearinterpolationmethodwasemployedduetoitssimplicityandeffectivenessinestimatingmissingvalues.Thisapproach,particularlysuitablefortimeseriesdata,linearlyinterpolatesmissingorNaNvaluesbasedonthelinearlyspacedvaluesbetweenknowndatapoints.Byutilizingthe.interpolate(method='linear')functiononourdataset,weensureasmoothtransitionbetweenquarterlydatapoints,therebymaintainingthetrendandvariabilityobservedintheoriginaldata.Thismethodassumesthatthechangebetweentwodatapointsislinear,fillinginmissingvalueswithappropriatelyspacedestimatesthatreflecttheunderlyingdatapattern.
Theinterpolationformulausedisgivenby:
,
where:
vinterpolatedisthevaluetobeinterpolated(estimated)forthetargettimepoint.
vstartandvendaretheknownvaluesbeforeandafterthepointtobeinterpolated,respectively.TstartandTendarethetimesatwhichvstartandvendareobserved,respectively.
Tinterpolatedisthetimepointatwhichthevalueistobeinterpolated.
Figure1:Exampleofbackcastingmissingvalues
Source:Authors’analysis
HandlingMissingValuesusingProphet:Toaddressinstancesofmissingdatainourdataset,weintegratedtheProphet16packageforbackcastingpurposes.Prophet,renownedforitsefficacyindiscerningunderlyingtrendsandseasonalfluctuationswithintimeseriesdata,facilitatedtheextrapolationofdatapointsbackwards.Thismethodallowedustoleverageestablishedpatternstoinferandpopulatemissingvalues,therebyensuringthedataset'scompletenessforsubsequentanalysis.TheProphetpackage,anopen-sourcetooldevisedbyFacebook,excelsinautomatic
8
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
forecastingofunivariatetimeseriesdata,simplifyingtheprocessofselectingoptimalhyperparameterstoenhanceforecastaccuracy.Thereasonwhywedecidedtonotdroptherowswithmissingvaluesisthelimiteddatasetwehad.Furthermore,ourresultsshowaboostinaccuracywhenkeepingtherowswithmissingvaluesandimputingasopposedtodroppingtherowswithmissingvalues.Figure1showsanexampleofProphetappliedtobacktwovariableswithmissingvalues.Itisimportanttonotethatthisstepappliesexactlytoboththeshort-termandmid-termwheretheonlydifferenceisthefrequencyofthetime-seriesbeingprocessed.
2.3.Datatransformation
AchievingStationarity:Differencinghasbeenappliedtostabilizethemeanandvarianceofthetimeseriestoensurestationarity.Whiledifferencingisacommonapproachtoachievestationarity,itsminimalimpactonourresultssuggeststhattheMLmodelsselectedwererobusttonon-stationarydata,acharacteristicadvantageousforourforecastingobjectivesasshowninFigure2.
Figure2:EffectofdifferencingusingXGBoost
Notes:USd1.Source:Authors’analysis
Scaling:PreliminaryanalysisindicatedthatscalingthedatatostandardizefeaturerangesdidnotsignificantlyaffecttheperformanceofourMLmodels.Ourtestsinvolvedusingamin-maxscalerinXGBoostonourtrainingsetandcomparingtheeffectwithandwithoutscaling.ForN-HiTS,weusearobustscaler17whichisamethodusedtostandardizefeaturesbyremovingthemedianandscalingwiththemeanabsolutedeviation(MAD)orinterquartilerange(IQR).Thistechniqueisparticularlyusefulwithnoisydatawhereoutlierscanheavilyinfluencethesamplemeanandvarianceinanegativeway.
9
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
2.4.Datasplitting
Thefollowingmethodologyappliestoboththeinputdatafortheshort-termandmedium-termmodelswithanyspecificmodificationexceptforthefrequencyparameter(monthlyversusquarterly)thatneedstobespecifiedinsomeofthesoftwarepackagesthatweused.
Training,Validation,andTestSets:Thedatasetwasdividedintotraining,validation,andtestingsetsfollowingtimeseriesforecastingbestpractices.Thissplitensuresthatthemodelsaretrainedonhistoricaldata,validatedtotunehyperparameterswithunseendata,andfinally,testedtoevaluateperformanceonthemostrecent,unseendata.Specifically,dataupuntil2018wasusedfortrainingandvalidation;and2019datawasusedforoutofsampletesting.Therationalforcuttingoursamplein2019wastoavoidtheimpactofthe2020COVIDshockinevaluatingourmodels’performance,asbothitssignificantexogeneityandmagnitudeweighingonglobaloildemanddrivenbythegovernments’restrictionsonmobility,aswellaspend-updemandinresponsetoliftingtheserestrictionsin2021and2022,wereidentifiedassourcesofdistortionbothformodeltrainingandevaluation.
Inthenextsection,we'lldelveintoModelDevelopmentandEvaluation,detailingthemethodologiesbehindmodelselection,training,evaluationmetrics,andthepost-processingtechniquesemployedtorefinetheforecasts.
2.5.Evaluationmetrics
Toassesstheperformanceofourforecastingmodels,weemploytwoprimaryevaluationmetrics:MeanSquaredError(MSE)andMeanAbsolutePercentageError(MAPE).Thesemetricsarechosenfortheirabilitytomeasureforecastaccuracyincomplementaryways,providingaholisticviewofmodelperformance.
MeanSquaredError(MSE):TheMSEiscalculatedastheaverageofthesquareddifferencesbetweentheactualandpredictedvalues.Itisgivenbytheformula:
iilsv,,iIuupliinlem,lthisaigeiiiit.fsi
deviations.
MeanAbsolutePercentageError(MAPE):TheMAPEmeasurestheaveragemagnitudeoferrorsasapercentageofactualvalues,offeringanintuitiveunderstandingofmodelaccuracy.Itisdefinedas:
MAPEisparticularlyvaluableincontextswheretherelativesizeoftheforecasterrorismoreimportantthantheabsolutesize,providinginsightsintothemodel'sperformanceinpercentageterms.Thismetricisgenerallyeasiertounderstandespeciallywhenwewanttocomparetheperformanceacrossthedifferentproductsthatmighthavevaryingerrormargins.
Thesemetricstogetherallowforacomprehensiveevaluationofforecastaccuracy,withMSEhighlightingmodelsthatmayhavelargeerrorsfordebuggingpurposes;andMAPEofferingapercentage-basedmeasurethatiseasilyinterpretableandusedforreportingandcomparingmodels.
10
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
3.Modelselectionandtraining
Thefollowingsectionsexplainthetrainingandmodelselectionapproachthatwasused.Thisappliestoboththeshort-termandmedium-termforecastingmodels.
3.1.XGBoostfortimeseriesforecasting
XGBoost(ExtremeGradientBoosting)operatesontheprincipleofboosting,anensembletechniquethatcombinesmultipleweaklearners(typicallydecisiontrees)intoastronglearnerinasequentialmanner.Eachtreeattemptstocorrecttheerrorsmadebythepreviousone,withthisprocessguidedbythegradientofthelossfunction.
Decisiontrees,usuallycreateamodelthatpredictthetargetbycreatingtreesusingtheif/elsestatement,andbyusingtheminimumnumberofsuchstatementstheytrytofindtheprobabilityofhavingthecorrectdecision.Suchtreesareusedforclassificationorregression(asinourproblem).
Themodel'scapacitytohandlevariousdatairregularities,suchasnon-linearityandmissingvalues,stemsfromitsrobustlossfunctionoptimizationandregularizationfeatures.XGBoostintroducesaregularizationtermintheobjectivefunction,reducingoverfittingbypenalizingcomplexmodels.Thisfeature,combinedwithitsabilitytoperformautomatichandlingofmissingvalues,makesXGBoostparticularlywell-suitedfortimeseriesforecastingwheresuchirregularitiesarecommon.
Gradientboostingdecisiontrees(GBDT)suchasXGBoostarewellknownfortheirperformanceagainstdeeplearningmodelsintabularproblems.ThereareseveralGBDTpackages,however,inourcasewehavedecidedtoXGBoostasthemostusedbyboth,MLresearchersandacademia.Figure3illustratesthewayXGBoost(andotherGBDTmodels)finalizetheirpredictionswherethefinalpredictionforagivensampleisthesumofpredictionsfromeachtree.
Figure3:SchematicoverviewoftheGradientBoostingMachineLearningprocess
Source:RecreatedfromAWSSagemaker18
Thefiguredepictstheiterativeprocessoftrainingagradientboostingmodel.Initially,thedataset(x,Y)isusedtotrainthefirsttree,F1(x).Theresidualsr1arecomputedtomeasurethediscrepancybetweenthepredictedandactualvalues.Aregularizationparameterα1isthendeterminedtominimizethelosswhenF1(x)andr1arecombined.
Thecontentsofthispaperaretheauthors’soleresponsibility.Theydonotnecessarilyrepresenttheviews
11
oftheOxfordInstituteforEnergyStudiesoranyofitsMembers.
Thisprocessisrepeatedforeachsubsequenttree.Fortheithtree,themodelFi(x)isupdatedto
Fi—1(x)+αihi(x,ri—1),
whereαiandriaretheregularizationparametersandresidualscomputedwiththeithtreerespectively,andhiisafunctionthatistrainedtopredictresidualsriusingxfortheithtree.
TheobjectiveistofindtheoptimalsetofαparametersbyminimizingthedifferentiablelossfunctionL(y,F(x)),whichiscomputedas:
Throughthisiterativeoptimization,thefinalmodelFm(x)isacombinationofeachindividualtree'spredictionsadjustedbytheircorrespondingregularizationparameters,aimedatreducingthelossfunction.
Fortheshort-termforecastapplication(i.e.,2-yearsahead),themodeldevelopmentprocessinvolvedcreatingasinglemodelforeverytimestepinourpredictionhorizonforagivenregion(i.e.,24-stepsahead).Thismeansthatfortheshortterm,weneedtocreate24modelsforeachproductresultinginatotalof167modelstodoashort-termforecastforagivenregion.
Toretai
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46849.3-2025技術(shù)產(chǎn)品文件基于模型定義要求第3部分:設(shè)計數(shù)據(jù)
- 養(yǎng)老院入住老人心理健康監(jiān)測制度
- 人力資源管理規(guī)范制度
- 企業(yè)內(nèi)部保密工作考核制度
- 后宮介紹教學(xué)課件
- 老年人護理知識分享守護長者健康
- (人教版2026新教材)二年級英語下冊Unit 2單元測試(含解析+聽力音頻)
- 皮革加工工安全宣教考核試卷含答案
- 熔體鎂工改進模擬考核試卷含答案
- 尿素裝置操作工安全專項強化考核試卷含答案
- 光化學(xué)和光催化反應(yīng)的應(yīng)用
- 中日友好醫(yī)院公開招聘工作人員3人筆試參考題庫(共500題)答案詳解版
- VDA6.3-2016過程審核主要證據(jù)清單
- 辦公耗材采購 投標方案(技術(shù)方案)
- 2020公務(wù)船技術(shù)規(guī)則
- 三片罐空罐檢驗作業(yè)指導(dǎo)書
- 四川峨勝水泥集團股份有限公司環(huán)保搬遷3000td熟料新型干法大壩水泥生產(chǎn)線環(huán)境影響評價報告書
- 開庭陳述事實舉證范文(4篇)
- 管道焊接工藝和熱處理課件
- 2023深圳工務(wù)署品牌名單
- 二年級下冊課文快樂讀書吧-神筆馬良
評論
0/150
提交評論