版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
MuhammedGoktepe*1AmirHosseinShamseddin*1ErencanUysal1JavierMuineloMonteagudo1
LukasDrees2AysimToker3SentholdAsseng4MaltevonBloh4
Abstract
SatelliteimageryisessentialforEarthobserva-tion,enablingapplicationslikecropyieldpre-diction,environmentalmonitoring,andclimatechangeassessment.However,integratingsatelliteimagerywithclimatedataremainsachallenge,limitingitsutilityforforecastingandscenarioanalysis.Weintroduceanoveldatasetof2.9mil-lionSentinel-2imagesspanning15landcovertypeswithcorrespondingclimaterecords,form-ingthefoundationfortwosatelliteimagegenera-tionapproachesusingfine-tunedStableDiffusion
3models.Thefirstisatext-to-imagegenerationmodelthatusestextualpromptswithclimateandlandcoverdetailstoproducerealisticsyntheticim-ageryforspecificregions.ThesecondleveragesControlNetformulti-conditionalimagegenera-tion,preservingspatialstructureswhilemappingclimatedataorgeneratingtime-seriestosimulatelandscapeevolution.Bycombiningsyntheticim-agegenerationwithclimateandlandcoverdata,ourworkadvancesgenerativemodelinginremotesensing,offeringrealisticinputsforenvironmen-talforecastingandnewpossibilitiesforclimateadaptationandgeospatialanalysis.
1.Introduction
Satelliteimageryisacriticalresourceforavarietyofre-searchandindustrialapplications,rangingfromenviron-
mentalmonitoringandclimateresearch(
deAra.
joetal,
*Equalcontribution1TechnicalUniversityofMunich,SchoolofComputation,InformationandTechnology,Germany2UniversityofZurich,DepartmentofMathematicalModelingandMachineLearning,EcoVisionLab,Switzerland3TechnicalUniversityofMunich,SchoolofComputation,InformationandTechnology,Dy-namicVisionandLearningGroup,Germany4TechnicalUniversityofMunich,SchoolofLifeSciences,DepartmentofLifeScienceEngineering,HEFWorldAgriculturalSystemsCenter,ChairofDigitalAgriculture,Germany.Correspondenceto:MaltevonBloh<malte.von.bloh@tum.de>.
Proceedingsofthe42ndInternationalConferenceonMachineLearning,Vancouver,Canada.PMLR267,2025.Copyright2025bytheauthor(s).
2025
;
Hussainetal.
,
2022
)toagriculture(
Khanaletal.
,
2020
),archaeology(
Mar.
n-Buznetal,
2021
),resourceexploration(
Shirmardetal.
,
2022
),andhumandevelop-mentmapping(
Burkeetal.
,
2021b
).Itprovidesvaluablespatialandtemporaldata,oftenservingastheprimaryorsupplementarysourceforpredictionandanalysismodels,includingcropyieldforecasting(
Khakietal.
,
2021
;
Mu-
rugananthametal.
,
2022
;
vonBlohetal.
,
2023
),forestrysurveillance(
Fassnachtetal.
,
2024
),anddisastermanage-ment(
Burkeetal.
,
2021a
).Inmanyregionsoftheworld,satellitedataistheonlyfeasiblemeansofacquiringnearreal-timeinformationaboutenvironmentalconditions.
However,theuseofremotesensingishamperedbysig-nificantchallenges,includingcloudcoverage,atmosphericdistortions,andtemporalresolutionconstraints(
Dubovik
etal.
,
2021
).Cloudcoverage,inparticular,renderssatelliteimageryunusableforlargepartsoftheworld,disruptingsatelliteobservationsincloud-proneareasfordaysorevenweeks,dependingontheseason(
Kingetal.
,
2013
;
Mercury
etal.
,
2012
).Theseoperationalchallengesnotonlyhinderreal-timemonitoringbutalsoraiseacriticalconceptualgap:theneedtointegratesatelliteimagerywithfutureclimatescenariostoenhancepredictionaccuracy.Whilevariousdatasetssupportmachinelearningapplicationstoaddressthesechallenges,mostaretask-specificorregionallycon-strained,limitingtheirgeneralizability(
Clasenetal.
,
2024
;
Christieetal.
,
2018
;
Schneideretal.
,
2023
;
VanEttenetal.
,
2018
).Toaddressthis,weintroduceacomprehensivere-motesensingdataset—oneofthelargesttodate—featuringover2.9millionSentinel-2RGBimageslinkedwithcli-matedata,enablingmorerobustandscalableapplicationsacrossdiverseenvironmentalconditions.Recentadvancesinmultimodalfoundationmodelsforremotesensinghavesignificantlyimprovedgenerationofsyntheticsatelliteim-ageryacrossdomains(
Hongetal.
,
2024
;
Khannaetal.
,
2024
;
Liuetal.
,
2024a
;
Yuetal.
,
2024b
).Butakeygapremainsingenerativemodelscapableofproducinglocation-specificsatelliteimageryconditionedonfutureclimaticconditions.Thislimitationhinderspredictiveapplicationssuchasseasonalcropyieldforecastingandtheassessmentofclimatechangeimpactsonlandcover(
Iizumietal.
,
2018
;
Zachowetal.
,
2024
).Thesemodelsrelyondetailedweatherandclimateprojectionstoimprovetheiraccuracy,butoften
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
2
Figure1.Ourframeworkenablesmulti-conditional(text+image)satelliteimagegenerationusingStableDiffusion3(
Esseretal.
,
2024
)andControlNet(
Zhangetal.
,
2023
).Onthetext-inputside,themodeltakesdetailedspatialandclimaticpromptembeddingscreatedbyCLIPandT5textencoders.Ontheimage-inputside,ControlNetisfine-tunedtoprocessanimageforspatialguidance.Bothispassedtopre-trainedStable-Diffusion3,whichgeneratesalocation-andclimatespecificsatelliteimage,alignedwithactualspatialcharacteristics.
dependonhistoricalorapproximatedsatellitedataintheabsenceofintegrationwithclimatescenarios.Thisresultsinaqualitativegapbetweenpredictedenvironmentalcondi-tionsandavailableimagery,complicatingtherepresentationofdynamicchangesinlandcoverorvegetationstates,re-ducingthepredictivepowerofthesemodels(
Ebeletal.
,
2020
;
Jozdanietal.
,
2022
).Thesechallengesunderscoretheneedforsyntheticsatelliteimagerytoenhancedatasetsandproviderealisticprojectionsforfutureconditions.Inthispaper,weintroduceanovelapproachtogeneratesatelliteimagesconditionedongeographic-climatepromptsusingStableDiffusion3.OurmethodenablesthesimulationofhowweatherandclimateaffectEarth’ssurface-generatingsyntheticimagesthatcansupportforecastingmodels(e.g.,cropyieldpredictionorlandcoverclassification),visualizeclimatechangemodelsundervariousscenarioassumptions,andfillobservationalgapsinregionsaffectedbypersistentcloudcover.Theapproachisgloballyapplicableandgener-atesrealisticimageswith10-meterspatialresolutionacrossdiversevegetationtypes(e.g.,cropland,broadleafforests,savannas),usinginformationaboutlocation,landcovertype,andclimateconditions.Weproposetwoinnovations:
1.Atext-to-imagegenerationmodelthatleveragesStableDiffusion3withclimatepromptengineering.
2.Amulti-conditional(text+image)frameworkutilizingControlNet,whichpreservesspatialfeaturesanden-ablesthegenerationoftimeseries.
Fig.
1
illustratestheconcept.Tosupportthisresearch,we
curatedadatasetofover2.9millionRGBsatelliteimagesfrom104,424locationsworldwide,sourcedfromSentinel-2(
Druschetal.
,
2012
).ThisdatasetspansthewholeEarthcat-egorizedin15vegetationzonesandeightyearsofhistoricaldata.Together,thesecontributionsadvancetheapplicationofgenerativemodelsinremotesensingandoffernovelsolu-tionsforavarietyofenvironmentalmonitoringchallenges.
2.RelatedWork
2.1.DiffusionModels
Diffusionmodelsareapowerfulclassofgenerativemodels,achievingstate-of-the-artperformanceinhigh-qualityimagesynthesisacrossdiversedomains(
Hoetal.
,
2020
;
Khanna
etal.
,
2024
;
Zhangetal.
,
2023
).TheyoperatebyiterativelydenoisingrandomGaussiannoisethroughalearnedreverse-diffusionprocess,producingrealisticsamples.Thesemod-elsexcelintaskslikeimagesuper-resolution,inpainting,anddomainadaptation(
Manvietal.
,
2024
;
Tokeretal.
,
2024
),andhavebeeneffectivelyappliedtosatelliteim-agerysynthesisbyleveragingcontrolimagesandtextualpromptstomaintainspatialstructureandstylisticfidelity(
Sastryetal.
,
2024
).Foundationalworkby
Sohl-Dickstein
etal.
(
2015
)introduceddiffusionprobabilisticmodels,laterrefinedby
Hoetal.
(
2020
)withasimplifieddenoisingob-jective.Score-basedgenerativemodeling(
Songetal.
,
2021
)andclassifier-freeguidance(
Dhariwal&Nichol
,
2021
)haveenhancedtheiradaptabilityandoutputquality.
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
3
2.2.SatelliteImageGeneration
Inremotesensing,imagegenerationhasalsobeenenhancedbydiffusionmodels,withmodelslikeStableDiffusion(SD)fine-tunedtogeneratesatelliteimagesfromtextualdescrip-tions(
Liuetal.
,
2024b
).
Khannaetal.
(
2024
)enrichedintheir“DiffusionSat”theSDmodel’sinputbyincorporatinggeo-locationandsamplingtimeasprompts,enablingthegenerationofhigh-qualitysatelliteimagestailoredtospe-cificgeographicandtemporalconditions.Theirexperimentsfocusedongeneratingdiverselandcovertypes,includingur-banareas,croplands,andforests,demonstratingthemodel’sabilitytocapturefine-graineddetailssuchasbuildingstruc-turesandvegetationpatterns.
Diffusionmodelshavealsobeenwidelyadoptedforimage-to-imagegeneration,producingrealisticsatelliteimagesfromguidinginputssuchasmaps,semanticlayouts,andmulti-modaldata.
Espinosa&Crowley
(
2023
)successfullygeneratedsatelliteimagesconditionedonhistoricalmaps,focusingonurbanandrurallandscapestosimulatehistori-calandfuturelandusechanges.
Tangetal.
(
2024
)refinedthegenerationprocessbyintegratingbothglobal(e.g.,tex-tualdescriptions)andlocal(e.g.,depthmaps,segmentationmasks)controlinformation,expandingthescopeofsatelliteimagesynthesis.
Satelliteimagedatasetsrangefromsmalltask-specificcol-lectionstolargegeneral-purposesets,withunlabeledremotesensingdataoftenexceedingonemillionimages,whilela-beleddatasetsaretypicallysmallerinsize.Reben(
Clasen
etal.
,
2024
)andEarthView(
Velazquezetal.
,
2025
)supportgeneral-purposeandself-supervisedlearning,withEarth-Viewcomprisingover15terapixelsofmulti-sourceimagery.fMoW(
Christieetal.
,
2018
)andEuroCrops(
Schneider
etal.
,
2023
)providelabeleddata,targetingfunctionallanduseandharmonizedcroptypes.Multimodalandcloud-robustdatasetssuchasSEN12MS-CR-TS(
Ebeletal.
,
2022
)andDiffCR(
Zouetal.
,
2024
)offerpairedradar-opticaltimeseriesforcloudremoval.Incontrast,MetaEarth(
Yuetal.
,
2024b
)presentsagenerativefoundationmodeltrainedonmulti-resolutionimageryforlarge-scaleimagesynthesis.Incontrast,climate-integrateddatasetshavesofarbeensmallerandhighlyspecializedforresearchapplications(
Nathetal.
,
2024
;
Requena-Mesaetal.
,
2021
).
2.3.IntegratingClimateData
Whenprocessingdatasetswithhigh-dimensionalclimatevariableslikecyclonedistribution,cloudcover,andwatervapor,diffusionmodelshaveproveneffective(
Liuetal.
,
2024b
).
Hatanakaetal.
(
2023
)usedcascadeddiffusionmod-elstogeneratehigh-resolutioncloudcoverimages,while
Nathetal.
(
2024
)employedmulti-stagediffusionframe-worksforprecipitationandcycloneforecasting.
Gaoetal.
(
2023
)and
Leinonenetal.
(
2023
)unifiedprecipitationnow-
castingwithinsinglediffusionmodels,achievingstate-of-the-artresultsbycapturingcomplexspatiotemporalrelation-ships.DiffCastfrom
Yuetal.
(
2024a
)outperformspreviousworksintheCriticalSuccessIndex(CSI)-whichmeasuresthefractionofcorrectlypredictedprecipitationeventsrela-tivetoallobservedorpredictedevents-by15.59%.
3.Preliminaries
3.1.Diffusion
DiffusionmodelsaimtoproduceimagesbyreversingastochasticGaussiannoisingprocess.Givenaninputimage,anoisyinputxtiscreatedbyaddingGaussiannoise:
xt=√1—βt·xt-1+√βt·?,?~N(0,I).(1)
Theparametersβtdenotethenoisevarianceateachtimestept,thehigherthetthemoretheaddednoise.Theaimofthediffusionmodelistodenoisearandomsampleusinganeuralnetworktopredictitsnoisevectors,effectivelylearningthemappingxt}→xt-1.ThisresultsinastochasticgenerativemodelMthatmapsfromapredefinednoisedistributionN(0,I)togeneratedimages.
M(z)=x0,z~N(0,I).(2)
Latentdiffusionmodelsareatypeofgenerativemodelthatappliesthediffusionprocesswithinalower-dimensionalla-tentspace,whichisobtainedbyencodingtheinputimages.Thisreducescomputationalcostcomparedtotraditionaldiffusionmodels.Adecoderthenreconstructstheimagefromthelatentspace.Conditionalarchitectures,includingStableDiffusion2,guidethedenoisingprocessbyincor-poratinganadditionalsignalC(·),suchastextorimages.Thisenablesthegenerationofmeaningfuloutputsthatalignwiththecontrolsignalandthespecifictaskforwhichthemodelwastrained.
M(z,C(z))=x0,z~N(0,I).(3)
3.2.ControlNet
ControlNet(
Zhangetal.
,
2023
)enhancesdiffusionmodelsbyintegratingexplicitspatialcontrolintothegenerativeprocess.LetF(x)denoteaneuralnetworkblockfromtheoriginalarchitecture,whichhasfrozenparametersinternally(omittedhereforbrevity).Thenewcontrolblockmodifiesitsoutputbyadding
y=F(x)+Z(F(x+Z(c;θ1);θcopy);θ2),(4)whereθcopyisatrainablecopyoftheoriginalparameters,andθ1andθ2aretheparametersofzeromodules(e.g.
convolutionlayersinitializedtozero).Thisdesignensuresthatthecontrolblockhasminimalinitialeffectonthemainblock,functioningsimilarlytoaskipconnection.
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
4
4.MaterialandMethods
4.1.TheEcoMapperDataset
WepresenttheEcoMapperdatasetthatcombinesSentinel-2RGBimageswithcorrespondingmetadata,assembledusingGoogleEarthEngine,SentinelHubandNASAPower(
Dr-
uschetal.
,
2012
;
Milcinskietal.
,
2019
;
NASA
,
2025
;
Phan
etal.
,
2020
).
4.1.1.SATELLITEIMAGERY
Thedatasetincludes104,424uniquegeographiclocations,randomlysampledfrom15distinctlandcoverclasses(
Phan
etal.
,
2020
)excludingwaterbodiesasshowninFigure
2
.Foreachlocation,weselectedonemonthlyobservationforatwoyearperiodbasedontheleastcloudyday,resultinginasequenceof24imagesperlocation.Thetwoyearsofob-servationarerandomlydistributedbetween2017and2022.Thetestsetconsistsof5,500uniquegeographiclocations,eachmonitoredmonthlyovera96-monthperiodfrom2017to2024.Thisensuressufficientspatialandtemporalinde-pendenceintheevaluation,enablingrobustassessmentofthemodel’sgeneralizationacrossdiverseregionsandunseenclimateconditions.Withaspatialcoverageof~26.21km2perobservationtheoveralldatasetcovers~2,704,000km2,accountingfor~2.05%ofEarth’sterrestrialarea.Anex-cerptofthedatasetispublishedintheGithubrepository,thefulldatasetisavailableattheuniversitiesservers.Formoredatasetdetailswereferto
A.1
.
4.1.2.CLIMATEDATA
Eachsampledlocationisenrichedwithmetadata,includinggeographiclocation(longitudeandlatitude),observationdate(monthandyear),landcovertype,andcloudcoverage(in%).Weincorporatedaveragemonthlytemperature,solarradiation,andtotalprecipitationfromNASAPower(
NASA
,
2025
),asthesefactorsmainlydrivevegetationgrowth,en-ergyavailabilityandwaterbalance,whichinturninfluenceagriculturalconditions,forestry,biodiversity,andlandcover(
PielkeSretal.
,
2011
).
4.2.GenerativeModels
Ourgoalistosynthesizesatelliteimageryconditionedongeographicandclimatemetadata,enablingrealisticpro-jectionsofenvironmentalconditions.Toachievethis,weleveragestate-of-the-artgenerativemodelsfortwokeytasks:text-to-imagegenerationandmulti-conditionalimagegen-eration.
Fortext-to-imagegeneration,weemploygenerationmodelsthatsynthesizesatelliteimagesbasedonstructuredmetadataprompts.Additionally,weintroduceamulti-conditionalgenerationapproachusingaControlNet-enhancedmodel,
Figure2.The104,424locationsweresampledgloballyacross15landcovertypes,providingarepresentativedistributionofEarth’slandsurface.Grasslandsandsparselyvegetatedregionsdomi-nate,followedbyforestedareasandcroplands,withadditionalcategoriessummarizedinto”O(jiān)thers”(mixed-,evergreenneedle-leafforest,permanentwetlands,cropland/naturalmosaics,urban,closedshrublandanddecidiuousneedleleafforest).Eachlocationincludesatimeseriesof24months(training)or96months(test-ing).
whichpreservesthespatialstructureofaninputimagewhilemappingclimate-inducedvariationsontoit.Byleveragingourdataset,wedemonstratehowenvironmentalchangescanbevisuallyrepresentedbymodifyingclimatemetadatainthegenerationprocess.
Weevaluatetwogenerativemodelsfortheirabilitytointe-grateclimatemetadataintosatelliteimagesynthesis:
StableDiffusion3(SD3)from
Esseretal.
(
2024
)-Amul-timodallatentdiffusionmodelincorporatingCLIPandT5textencodersforflexiblepromptconditioning.Wefine-tuneSD3usingourdatasettogeneraterealisticsatelliteimageryconditionedongeographic,climatic,andtemporalmetadata.Akeychallengeistherepresentationofcontinu-ousclimatevariables,whichweaddressthroughstructuredpromptengineering.DiffusionSatfrom
Khannaetal.
(
2024
)
-aspecializedfoundationmodelforsatelliteimagery,ex-tendingStableDiffusion2withadedicatedmetadataem-beddinglayerfornumericalconditioning.Thisarchitectureencodeskeyspatialandtemporalattributes,includinglati-
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
5
tude,longitude,timestamp,groundsamplingdistance,andcloudcover.Unlikegenericdiffusionmodels,DiffusionSatisexplicitlydesignedforremotesensingtasks,includingsuper-resolution,inpainting,andtemporalprediction.
4.2.1.TEXT-TO-IMAGEGENERATION
WecomparemultipleconfigurationsofStableDiffusion3andDiffusionSat,withandwithoutfine-tuning,toassesstheircapacityforclimate-awaresatelliteimagesynthesis.ThebaseSD3model,leveragingaT5encoder,allowsfullclimatepromptconditioning.ThebaseDiffusionSatmodel,limitedtoonetextencoderwith77tokens,wasonlycondi-tionedonmonth,year,cloudiness,andlandcovertypeduetoitspredefinedmetadataembeddingstructure.ToenableDiffusionSatfine-tuningwithadditionalclimatemetadata,wemodifieditsSatUNetarchitecturebyintroducing10metadatalayers.WeinitializedthisadaptednetworkwithpretrainedDiffusionSatweightswhilerandomlyinitializingthenewlayers,followedbyfull-modelfine-tuning.Forafaircomparison,bothmodelsweretrainedat512×512res-olution,whichalignswithDiffusionSat’soriginaltrainingsetup.Additionally,SD3,whichsupportshigherresolu-tions,wastestedinafine-tunedexperimentat1024×1024resolution.Insummaryweevaluate:
1.Baselinemodels:Bothmodelswereevaluatedwithoutfine-tuningat512×512resolution.
2.Fine-tunedmodels:Bothmodelswerefine-tuned(-FT)withclimatemetadataat512×512resolution.
3.High-resolutionSD3:SD3-FT-HRwasfine-tunedwithclimatemetadataat1024×1024resolution.
4.2.2.CLIMATE-AWARESENSITIVITYANALYSIS
ToassessthesensitivityoftheSD3-FT-HRmodeltocli-matevariablesandensurethatperformancegainsstemfrommeaningfulclimateconditioningratherthanspuriouscor-relationswithmonth,landcover,orlocationweperformatargetedsensitivityanalysis.Weevaluatethemodel’sabilitytoincorporateclimateeffectsintosatelliteimagegenerationbytestingitunderextremeconditions,rangingfromdrybo-real(cold,dry)tohumidtropical(hot,wet)climates.Thesevariationsspanmultiplelandcovertypesandregions,en-ablingustodeterminewhetherthemodelcapturesgenuineclimateinfluencesormerelyexploitsdatasetcorrelations.
4.2.3.MULTI-CONDITIONALIMAGEGENERATION
Forthetaskofmulti-conditional(text+image)imagegen-eration,weutilizeafine-tunedStableDiffusion3modelenhancedwithLoRA(Low-RankAdaptation).Thismodel,trainedata512×512resolution,servesasafoundationalpriorforgeneratinghigh-qualityandcontextuallyrelevantoutputs.Toconditiontheimagegenerationprocessonboth
spatialstructureandclimatedynamics,weincorporateadual-conditioningmechanismusingControlNet.Control-NetextendsStableDiffusionbyintroducingtrainableneurallayersthatguidethedenoisingprocessusinganexternalcontrolsignal.Inourapproach,twocriticalconditioningsignalsareused:Satelliteimageryfrompreviousmonthsasacontrolsignalthatpreservesthespatialstructureofthegeneratedimage,ensuringthatlandforms,urbanlayouts,andothergeographicalfeaturesremainintact.Thisalsoen-ablesthemodeltoincorporatetemporalchangesovertime,reflectingreal-worldenvironmentalshifts.ClimatePrompts:Atextualconditioningmechanismthatspecifiesclimaticandatmosphericconditionsunderwhichthesatelliteimageshouldbegenerated.Bycombiningthesetwoconditioningfactors,themodeliscapableofgeneratingrealisticsatelliteimagesthatintegrateclimatevariationswhilemaintainingspatialconsistency.Thismethodsupportstime-seriesgener-ation,allowingthesimulationoflandscapeevolutionunderchangingclimateconditions.
4.3.PromptStructure
Wedesigntwotypesofpromptstoeffectivelyconditionsatelliteimagegeneration:aspatialprompt,whichencodesmetadata,andaclimatepromptextendingitwithenviron-mentaldetails.BothpromptsleveragethetextencodersofStableDiffusion3,withspatialinformationprocessedbyCLIPandclimatedatahandledbytheT5encoder.
1.SpatialPrompt:Capturesfundamentalmetadata,in-cludinglandcovertype,location,date,andcloudiness.Thisensuresthatthegeneratedimagesalignwiththegeographicandtemporalcontext.
2.ClimatePrompt:Extendsthespatialpromptbyincor-poratingmonthlyclimatevariablestemperature,pre-cipitation,andsolarradiationprovidingadditionalen-vironmentalconditioningforimagegeneration.
Thestructuredpromptfollowstheformat:“Asatelliteimageof[landcovertype]in[location]on[date].Theaveragetemperaturewas[temperature],with[precipitation]and[so-larradiation].”Thisformatensuresthegeneratedimagesremaincontextuallyandenvironmentallyaccuratebyinte-gratingbothspatialandclimaticfactors.Forexample:“AsatelliteimageofcroplandsinNorthernCape,SouthAfrica,onOctober2019.Theaveragetemperatureoverthelastmonthwas20°C,withanaverageprecipitationof0mmandanaveragedailysolarradiationof25W/m2.”Thisstructuredpromptingframeworkenableseffectivecondi-tioningacrossspatialandenvironmentaldimensions.Ad-ditionaldetailsonthepromptingstrategyandcomparativeresultsfordifferentpromptformulationsareprovidedinAppendix
A.3.5
.
EcoMapper:GenerativeModelingforClimate-AwareSatelliteImagery
6
4.3.1.METRICS
Toevaluatethequality,diversity,andperceptualfidelityofthegeneratedsatelliteimages,weusefiveestablishedmet-rics:FID,LPIPS,SSIM,PSNR,andCLIPScore.FIDandLPIPSassessrealismandperceptualsimilarity,whileSSIMandPSNRmeasurestructuralconsistencyandreconstruc-tionquality.CLIPScoreevaluatestext-imagealignment.Adetaileddescriptionisprovidedin
A.2
.
5.Results
5.1.Text-to-ImageGeneration
Wetestourmodelson5,500worldwidelocationsacrossalllandcovertypes,usingeightyearsofsatellitedatawithmonthlyobservations.AsshowninTab.
1
,thebaselinemod-elsfromSD3andDiffusionSathadthelowestevaluationscores.However,DiffusionSatdemonstratedsuperiorper-formanceoverSD3,showingadvantagesfromthesatellite-specificpretraining.Fine-tuningsignificantlyimprovedbothmodelsacrossallmetrics:SD3-FTachievedhigherCLIP,SSIM,andPSNRscores,whileDiffusionSat-FTexcelledinFIDandLPIPS.Thebest-performingmodelintermsofFIDwasSD3-FT-HR,whichproducedthehighest-resolutionimages.
ThequalitativeresultsinFig.
3
demonstratethecapabil-ityofourmodelsingeneratingrealisticsatelliteimagesconditionedongeographicandlandtypemetadata.Inpar-ticular,themodelsexcelatcapturingthestructuredpatternsofcroplands/grasslands,suchasthoseseeninKazakhstanandParaguay,whereregularfieldpatternsarefaithfullyreproduced.Allthreemodelseffectivelypreservetheessen-tialstructureoftheselandscapes.InmountainousregionslikeCanada,themodelssuccessfullycapturethedistinctfeaturesofsnow-coveredterrainsandrockysurfaces.Whilebotharchitectureshandlesnowcoveragewell,SD3-FT-HRexcelsatpreservingthesharpcontrastsbetweensnowandrockformations,providingfinerdetailcomparedtoDiffu-sionSatinthiscontext.IngrasslandregionsofParaguay,themodelsrepresenttheexpansive,flatterrainwithsparsevegetationeffectively,capturingthehomogeneousstruc-turetypicalofgrasslands.Allmodelsmanagetorepresentthebroadnessoftheseregions,thoughSD3modelsshowaslightimprovementincapturingthesubtlevariationsinvegetationdensity.ForwetlandareasDiffusionSatcapturesthewaterpresencewithhighfidelity,whileSD3alsoeffec-tivelyrepresentsthewetland’sdynamicstructure,withbothmodelsexcellinginmaintainingth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 46983.703-2025光伏組件用材料測(cè)試程序第7-3部分:加速壓力測(cè)試光伏組件外表面的磨損測(cè)試方法
- 衛(wèi)生統(tǒng)計(jì)學(xué)試題及答案
- 網(wǎng)絡(luò)安全考試題及答案
- 2023年人教版五年級(jí)語(yǔ)文下冊(cè)期中試題及答案【一套】
- 第十一章代表性傳染病的檢疫
- 2022年福建省南僑中學(xué)高考沖刺押題(最后一卷)語(yǔ)文試卷含解析
- 2026年農(nóng)產(chǎn)品品牌建設(shè)培訓(xùn)
- 安全生產(chǎn)三年行動(dòng)專項(xiàng)整治工作總結(jié)
- 電氣安全施工技術(shù)要領(lǐng)
- 2022~2023自考專業(yè)(國(guó)貿(mào))考試題庫(kù)及答案第268期
- 教育培訓(xùn)行業(yè)培訓(xùn)師績(jī)效考核表
- 城市更新培訓(xùn)課件
- 2026年度哈爾濱市第一專科醫(yī)院公開(kāi)招聘編外合同制工作人員51人筆試備考試題及答案解析
- 2026年蘇州工業(yè)職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能測(cè)試題庫(kù)新版
- 正確停車課件
- 2025年度呼吸內(nèi)科護(hù)士長(zhǎng)述職報(bào)告
- GB/T 5783-2025緊固件六角頭螺栓全螺紋
- FGR遺傳病因的精準(zhǔn)篩查策略
- 護(hù)患溝通技巧與沖突處理策略
- 《大連醫(yī)科大學(xué)研究生學(xué)位論文書(shū)寫(xiě)規(guī)范》
- 二十屆四中全會(huì)測(cè)試題及參考答案
評(píng)論
0/150
提交評(píng)論